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Preface

Nanoscale physics, nowadays one of the most topical research subjects, has
two major areas of focus. One is the important field of potential applications
bearing the promise of a great variety of materials having specific properties
that are desirable in daily life. Even more fascinating to the researcher in
physics are the fundamental aspects where quantum mechanics is seen at work;
most macroscopic phenomena of nanoscale physics can only be understood and
described using quantum mechanics. The emphasis of the present volume is
on this latter aspect.

It fits perfectly within the tradition of the South African Summer Schools
in Theoretical Physics and the fifteenth Chris Engelbrecht School was de-
voted to this highly topical subject. This volume presents the contents of
lectures from four speakers working at the forefront of nanoscale physics. The
first contribution addresses some more general theoretical considerations on
Fermi liquids in general and quantum dots in particular. The next topic is
more experimental in nature and deals with spintronics in quantum dots. The
alert reader will notice the close correspondence to the South African Summer
School in 2001, published in LNP 587. The following two sections are theoreti-
cal treatments of low temperature transport phenomena and electron scatter-
ing on normal-superconducting interfaces (Andreev billiards). The enthusiasm
and congenial atmosphere created by the speakers will be remembered well
by all participants. The beautiful scenery of the Drakensberg surrounding the
venue contributed to the pleasant spirit prevailing during the school.

A considerable contingent of participants came from African countries out-
side South Africa and were supported by a generous grant from the Ford
Foundation; the organisers gratefully acknowledge this assistance.

The Organising Committee is indebted to the National Research Founda-
tion for its financial support, without which such high level courses would be
impossible. We also wish to express our thanks to the editors of Lecture Notes
in Physics and Springer for their assistance in the preparation of this volume.

Stellenbosch WD Heiss

February 2005
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A Guide for the Reader

Quantum dots, often denoted artificial atoms, are the exquisite tools by which
quantum behavior can be probed on a scale appreciably larger than the atomic
scale, that is, on the nanometer scale. In this way, the physics of the devices
is closer to classical physics than that of atomic physics but they are still
sufficiently small to clearly exhibit quantum phenomena. The present volume
is devoted to some of these fascinating aspects.

In the first contribution general theoretical aspects of Fermi liquids are
addressed, in particular, the renormalization group approach. The choice of
appropriate variables as a result of averaging over “unimportant” variables is
presented. This is then aptly applied to large quantum dots. The all impor-
tant scales, ballistic dots and chaotic motion are discussed. Nonperturbative
methods and critical phenomena feature in this thorough treatise. The tra-
ditional phenomenological Landau parameters are given a more satisfactory
theoretical underpinning.

A completely different approach is encountered in the second contribution
in that it is a thorough experimental expose of what can be done or expected in
the study of small quantum dots. Here the emphasis lies on the electron spin to
be used as a qubit. The experimental steps toward using a single electron spin –
trapped in a semiconductor quantum dot – as a spin qubit are described.
The introduction contains a resume of quantum computing with quantum
dots. The following sections address experimental implementations, the use
of different quantum dot architectures, measurements, noise, sensitivity and
high-speed performance. The lectures are based on a collaborative effort of
research groups in the Netherlands and in Japan.

The last two contributions are again theoretical in nature and address
particular aspects relating to quantum dots. In the third lecture series, mech-
anisms of low-temperature electronic transport through a quantum dot –
weakly coupled to two conducting leads – are reviewed. In this case transport is
dominated by electron–electron interaction. At moderately low temperatures
(comparing with the charging energy) the linear conductance is suppressed by
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the Coulomb blockade. A further lowering of the temperature leads into the
Kondo regime.

The fourth series of lectures deals with a very specific and cute aspect of
nanophysics: a peculiar property of superconducting mirrors as discovered by
Andreev about forty years ago. The Andreev reflection at a superconductor
modifies the excitation spectrum of a quantum dot. The difference between a
chaotic and integrable billiard (quantum dot) is discussed and relevant clas-
sical versus quantum time scales are given. The results are a challenge to
experimental physicists as they are not confirmed as yet.



The Renormalization Group Approach – From

Fermi Liquids to Quantum Dots

R. Shankar

Sloane Physics Lab, Yale University, New Haven CT 06520
r.shankar@yale.edu

1 The RG: What, Why and How

Imagine that you have some problem in the form of a partition function

Z(a, b) =

∫

dx

∫

dye−a(x2+y2)e−b(x+y)4 (1)

where a, b are the parameters.
First consider b = 0, the gaussian model. Suppose that you are just inter-

ested in x, say in its fluctuations. Then you have the option of integrating out
y and working with the new partition function

Z(a) = N

∫

dxe−ax2

(2)

where N comes from doing the y-integration. We will ignore such an x-
independent pre-factor here and elsewhere since it will cancel in any averaging
process.

Consider now the nongaussian case with b �= 0. Here we have

Z(a′, b′ . . .) =

∫

dx

[∫

dye−a(x2+y2)e−b(x+y)4
]

≡
∫

dxe−a′ x2

e−b′x4−c′x6+... (3)

where a′, b′ etc., define the parameters of the effective field theory for x. These
parameters will reproduce exactly the same averages for x as the original ones.
This evolution of parameters with the elimination of uninteresting degrees of
freedom, is what we mean these days by renormalization, and as such has
nothing to do with infinities; you just saw it happen in a problem with just
two variables.

R. Shankar: The Renormalization Group Approach – From Fermi Liquids to Quantum Dots,
Lect. Notes Phys. 667, 3–24 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005



4 R. Shankar

The parameters b, c etc., are called couplings and the monomials they
multiply are called interactions. The x2 term is called the kinetic or free-field
term.

Notice that to get the effective theory we need to do a nongaussian integral.
This can only be done perturbatively. At the simplest tree Level, we simply
drop y and find b′ = b. At higher orders, we bring down the nonquadratic
exponential and integrate in y term by term and generate effective interactions
for x. This procedure can be represented by Feynman graphs in which variables
in the loop are limited to the ones being eliminated.

Why do we do this? Because certain tendencies of x are not so apparent
when y is around, but surface to the top, as we zero in on x. For example,
we are going to consider a problem in which x stands for low-energy variables
and y for high energy variables. Upon integrating out high energy variables
a numerically small coupling can grow in size (or initially impressive one
diminish into oblivion), as we zoom in on the low energy sector.

This notion can be made more precise as follows. Consider the gaussian
model in which we have just a �= 0. We have seen that this value does not
change as y is eliminated since x and y do not talk to each other. This is
called a fixed point of the RG. Now turn on new couplings or “interactions”
(corresponding to higher powers of x, y etc.) with coefficients b, c and so
on. Let a′, b′ etc., be the new couplings after y is eliminated. The mere fact
that b′ > b does not mean b is more important for the physics of x. This is
because a′ could also be bigger than a. So we rescale x so that the kinetic
part, x2, has the same coefficient as before. If the quartic term still has a
bigger coefficient, (still called b′), we say it is a relevant interaction. If b′ < b
we say it is irrelevant. This is because in reality y stands for many variables,
and as they are eliminated one by one, the coefficient of the quartic term will
run to zero. If a coupling neither grows not shrinks it is called marginal.

There is another excellent reason for using the RG, and that is to under-
stand the phenomenon of universality in critical phenomena. I must regretfully
pass up the opportunity to explain this and refer you to Professor Michael
Fisher’s excellent lecture notes in this very same school many years ago [1].

We will now see how this method is applied to interacting fermions in
d = 2. Later we will apply these methods to quantum dots.

2 The Problem of Interacting Fermions

Consider a system of nonrelativistic spinless fermions in two space dimensions.
The one particle hamiltonian is

H =
K2

2m
− µ (4)
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where the chemical potential µ is introduced to make sure we have a finite
density of particles in the ground state: all levels up the Fermi surface, a circle
defined by

K2
F /2m = µ (5)

are now occupied and occupying these levels lowers the ground-state energy.
Notice that this system has gapless excitations above the ground state.

You can take an electron just below the Fermi surface and move it just above,
and this costs as little energy as you please. Such a system will carry a dc
current in response to a dc voltage. An important question one asks is if this
will be true when interactions are turned on. For example the system could
develop a gap and become an insulator. What really happens for the d = 2
electron gas?

We are going to answer this using the RG. Let us first learn how to do RG
for noninteracting fermions. To understand the low energy physics, we take a
band of of width Λ on either side of the Fermi surface. This is the first great
difference between this problem and the usual ones in relativistic field theory
and statistical mechanics. Whereas in the latter examples low energy means
small momentum, here it means small deviations from the Fermi surface.
Whereas in these older problems we zero in on the origin in momentum space,
here we zero in on a surface. The low energy region is shown in Fig. 1.

To apply our methods we need to cast the problem in the form of a path
integral. Following any number of sources, say [2] we obtain the following
expression for the partition function of free fermions:

Z0 =

∫

dψdψeS0 (6)

where

K 
F 

ΛK 
F 

 

+ 

Λ K 
F - 

Fig. 1. The low energy region for nonrelativistic fermions lies within the annulus
concentric with the Fermi circle
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S0 =

∫

d2K

∫ ∞

−∞

dωψ(ω,K)

(

iω − (K2 − K2
F )

2m

)

ψ(ω,K) (7)

where ψ and ψ are called Grassmann variables. They are really weird objects
one gets to love after some familiarity. Most readers can assume they are
ordinary integration variables. The dedicated reader can learn more from [2].

We now adapt this general expression to the annulus to obtain

Z0 =

∫

dψdψeS0 (8)

where

S0 =

∫ 2π

0

dθ

∫ ∞

−∞

dω

∫ Λ

−Λ

dkψ(iω − v k)ψ . (9)

To get here we have had to approximate as follows:

K2 − K2
F

2m
≃ KF

m
· k = vF k (10)

where k − K − KF and vF is the fermi velocity, hereafter set equal to unity.
Thus Λ can be viewed as a momentum or energy cut-off measured from the
Fermi circle. We have also replaced KdK by KF dk and absorbed KF in ψ
and ψ. It will seen that neglecting k in relation to KF is irrelevant in the
technical sense.

Let us now perform mode elimination and reduce the cut-off by a factor s.
Since this is a gaussian integral, mode elimination just leads to a multiplicative
constant we are not interested in. So the result is just the same action as
above, but with |k| ≤ Λ/s. Let us now do make the following additional
transformations:

(ω′, k′) = s(ω, k)

(ψ′(ω′, k′), ψ
′
(ω′, k′)) = s−3/2

(

ψ

(

ω′

s
,
k′

s

)

, ψ

(

ω′

s
,
k′

s

))

. (11)

When we do this, the action and the phase space all return to their old
values. So what? Recall that our plan is to evaluate the role of quartic in-
teractions in low energy physics as we do mode elimination. Now what really
matters is not the absolute size of the quartic term, but its size relative to
the quadratic term. Keeping the quadratic term identical before and after the
RG action makes the comparison easy: if the quartic coupling grows, it is rele-
vant; if it decreases, it is irrelevant, and if it stays the same it is marginal. The
system is clearly gapless if the quartic coupling is irrelevant. Even a marginal
coupling implies no gap since any gap will grow under the various rescalings
of the RG.

Let us now turn on a generic four-Fermi interaction in path-integral form:

S4 =

∫

ψ(4)ψ(3)ψ(2)ψ(1)u(4, 3, 2, 1) (12)



RG for Interacting Fermions 7

where
∫

is a shorthand:

∫

≡
3

∏

i=1

∫

dθi

∫ Λ

−Λ

dki

∫ ∞

−∞

dωi (13)

At the tree level, we simply keep the modes within the new cut-off, rescale
fields, frequencies and momenta, and read off the new coupling. We find

u′(k′, ω′, θ) = u(k′/s, ω′/s, θ) (14)

This is the evolution of the coupling function. To deal with coupling con-
stants with which we are more familiar, we expand the functions in a Taylor
series (schematic)

u = uo + ku1 + k2u2 . . . (15)

where k stands for all the k’s and ω’s. An expansion of this kind is possible
since couplings in the Lagrangian are nonsingular in a problem with short
range interactions. If we now make such an expansion and compare coefficients
in (14), we find that u0 is marginal and the rest are irrelevant, as is any
coupling of more than four fields. Now this is exactly what happens in φ4

4,
scalar field theory in four dimensions with a quartic interaction. The difference
here is that we still have dependence on the angles on the Fermi surface:

u0 = u(θ1, θ2, θ3, θ4)

Therefore in this theory we are going to get coupling functions and not a
few coupling constants.

Let us analyze this function. Momentum conservation should allow us to
eliminate one angle. Actually it allows us more because of the fact that these
momenta do not come form the entire plane, but a very thin annulus near
KF . Look at the left half of Fig. 2. Assuming that the cutoff has been reduced
to the thickness of the circle in the figure, it is clear that if two points 1 and
2 are chosen from it to represent the incoming lines in a four point coupling,

K 

K 

1 

2 

K 1 K 2 + 

K 

K 

1 

2 

K 

K 

3 

4 

Fig. 2. Kinematical reasons why momenta are either conserved pairwise or restricted
to the BCS channel
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the outgoing ones are forced to be equal to them (not in their sum, but
individually) up to a permutation, which is irrelevant for spinless fermions.
Thus we have in the end just one function of two angles, and by rotational
invariance, their difference:

u(θ1, θ2, θ1, θ2) = F (θ1 − θ2) ≡ F (θ) . (16)

About forty years ago Landau came to the very same conclusion [3] that a
Fermi system at low energies would be described by one function defined on
the Fermi surface. He did this without the benefit of the RG and for that
reason, some of the leaps were hard to understand. Later detailed diagram-
matic calculations justified this picture [4]. The RG provides yet another way
to understand it. It also tells us other things, as we will now see.

The first thing is that the final angles are not slaved to the initial ones if
the former are exactly opposite, as in the right half of Fig. 2. In this case, the
final ones can be anything, as long as they are opposite to each other. This
leads to one more set of marginal couplings in the BCS channel, called

u(θ1,−θ1, θ3,−θ3) = V (θ3 − θ1) ≡ V (θ) . (17)

The next point is that since F and V are marginal at tree level, we have
to go to one loop to see if they are still so. So we draw the usual diagrams
shown in Fig. 3. We eliminate an infinitesimal momentum slice of thickness
dΛ at k = ±Λ.
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Fig. 3. One loop diagrams for the flow of F and V . The last at the bottom shows
that a large momentum Q can be absorbed only at two particular initial angles (only
one of which is shown) if the final state is to lie in the shell being eliminated
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These diagrams are like the ones in any quartic field theory, but each
one behaves differently from the others and its its traditional counterparts.
Consider the first one (called ZS) for F . The external momenta have zero
frequencies and lie of the Fermi surface since ω and k are irrelevant. The mo-
mentum transfer is exactly zero. So the integrand has the following schematic
form:

δF ≃
∫

dθ

∫

dkdω

(

1

(iω − ε(K))

1

(iω − ε(K))

)

(18)

The loop momentum K lies in one of the two shells being eliminated. Since
there is no energy difference between the two propagators, the poles in ω lie
in the same half-plane and we get zero, upon closing the contour in the other
half-plane. In other words, this diagram can contribute if it is a particle-hole
diagram, but given zero momentum transfer we cannot convert a hole at −Λ
to a particle at +Λ. In the ZS’ diagram, we have a large momentum transfer,
called Q in the inset at the bottom. This is of order KF and much bigger
than the radial cut-off, a phenomenon unheard of in say φ4 theory, where all
momenta and transfers are bounded by Λ. This in turn means that the loop
momentum is not only restricted in the direction to a sliver dΛ, but also in
the angular direction in order to be able to absorb this huge momentum Q
and land up in the other shell being eliminated (see bottom of (Fig. 3). So we
have du ≃ dt2, where dt = dΛ/Λ. The same goes for the BCS diagram. Thus
F does not flow at one loop.

Let us now turn to the renormalization of V . The first two diagrams are
useless for the same reasons as before, but the last one is special. Since the
total incoming momentum is zero, the loop momenta are equal and opposite
and no matter what direction K has, −K is guaranteed to lie in the same shell
being eliminated. However the loop frequencies are now equal and opposite
so that the poles in the two propagators now lie in opposite half-planes. We
now get a flow (dropping constants)

dv(θ1 − θ3)

dt
= −

∫

dθv(θ1 − θ) v(θ − θ3) (19)

Here is an example of a flow equation for a coupling function. However by
expanding in terms of angular momentum eigenfunctions we get an infinite
number of flow equations

dvm

dt
= −v2

m . (20)

one for each coefficient. These equations tell us that if the potential in angu-
lar momentum channel m is repulsive, it will get renormalized down to zero
(a result derived many years ago by Anderson and Morel) while if it is attrac-
tive, it will run off, causing the BCS instability. This is the reason the V ’s
are not a part of Landau theory, which assumes we have no phase transitions.
This is also a nice illustration of what was stated earlier: one could begin with
a large positive coupling, say v3 and a tiny negative coupling v5. After much
renormalization, v3 would shrink to a tiny value and v5 would dominate.
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3 Large-N Approach to Fermi Liquids

Not only did Landau say we could describe Fermi liquids with an F function,
he also managed to compute the response functions at small ω and q in terms
of the F function even when it was large, say 10, in dimensionless units. Again
the RG gives us one way to understand this. To this end we need to recall the
the key ideas of “large-N” theories.

These theories involve interactions between N species of objects. The large-
ness of N renders fluctuations (thermal or quantum) small, and enables one
to make approximations which are not perturbative in the coupling constant,
but are controlled by the additional small parameter 1/N .

As a specific example let us consider the Gross-Neveu model [5] which is
one of the simplest fermionic large-N theories. This theory has N identical
massless relativistic fermions interacting through a short-range interaction.
The Lagrangian density is

L =

N
∑

i=1

ψ̄i �∂ψi −
λ

N

(

N
∑

i=1

ψ̄iψi

)2

(21)

Note that the kinetic term conserves the internal index, as does the in-
teraction term: any index that goes in comes out. You do not have to know
much about the GN model to to follow this discussion, which is all about the
internal indices.

Figure 4 shows the first few diagrams in the expression for the scattering
amplitude of particle of isospin index i and j in the Gross-Neveu theory. The
“bare” vertex comes with a factor λ/N . The one-loop diagrams all share a
factor λ2/N2 from the two vertices. The first one-loop diagram has a free
internal summation over the index k that runs over N values, with the con-
tribution being identical for each value of k. Thus, this one-loop diagram
acquires a compensating factor of N which makes its contribution of order
λ2/N , the same order in 1/N as the bare vertex. However, the other one-
loop diagrams have no such free internal summation and their contribution

= +++ + 

i

i

i jii  j j
 j

 j

i
i

 i j

i

ij

 j

i

 j
 j

k

ik

j
...

j

Fig. 4. Some diagrams from a large-N theory
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is indeed of order 1/N2. Therefore, to leading order in 1/N , one should keep
only diagrams which have a free internal summation for every vertex, that
is, iterates of the leading one-loop diagram, which are called bubble graphs.
For later use remember that in the diagrams that survive (do not survive), the
indices i and j of the incoming particles do not (do) enter the loops. Let us
assume that the momentum integral up to the cutoff Λ for one bubble gives a
factor −Π(Λ, qext), where qext is the external momentum or frequency trans-
fer at which the scattering amplitude is evaluated. To leading order in large-N
the full expression for the scattering amplitude is

Γ (qext) =
1

N

λ

1 + λΠ(Λ, qext)
(22)

Once one has the full expression for the scattering amplitude (to leading
order in 1/N) one can ask for the RG flow of the “bare” vertex as the cutoff
is reduced by demanding that the physical scattering amplitude Γ remain
insensitive to the cutoff. One then finds (with t = ln(Λ0/Λ))

dΓ(qext)

dt
= 0 ⇒ dλ

dt
= −λ2 dΠ(Λ, qext)

dt
(23)

which is exactly the flow one would extract at one loop. Thus the one-loop RG
flow is the exact answer to leading order in a large-N theory. All higher-order
corrections must therefore be subleading in 1/N .

3.1 Large-N Applied to Fermi Liquids

Consider now the ψ̄ψ − ψ̄ψ correlation function (with vanishing values of
external frequency and momentum transfer). Landau showed that it takes the
form

χ =
χ0

1 + F0
, (24)

where F0 is the angular average of F (θ) and χ0 is the answer when F = 0.
Note that the answer is not perturbative in F .

Landau got this result by working with the ground-state energy as a func-
tional of Fermi surface deformations. The RG provides us with not just the
ground-state energy, but an effective hamiltonian (operator) for all of low-
energy physics. This operator problem can be solved using large N -techniques.

The value of N here is of order KF /Λ, and here is how it enters the
formalism. Imagine dividing the annulus in (Fig. 1) into N patches of size (Λ)
in the radial and angular directions. The momentum of each fermion ki is a
sum of a “large” part (O(kF )) centered on a patch labelled by a patch index
i = 1, . . . N and a “small” momentum (O(Λ) within the patch [2].

Consider a four-fermion Green’s function, as in (Fig. 4). The incoming
momenta are labelled by the patch index (such as i) and the small momentum
is not shown but implicit. We have seen that as Λ → 0, the two outgoing
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momenta are equal to the two incoming momenta up to a permutation. At
small but finite Λ this means the patch labels are same before and after.
Thus the patch index plays the role of a conserved isospin index as in the
Gross-Neveu model.

The electron-electron interaction terms, written in this notation, (with
k integrals replaced by a sum over patch index and integration over small
momenta) also come with a pre-factor of 1/N (≃ Λ/KF ).

It can then be verified that in all Feynman diagrams of this cut-off theory
the patch index plays the role of the conserved isospin index exactly as in
a theory with N fermionic species. For example in (Fig. 4) in the first dia-
gram, the external indices i and j do not enter the diagram (small momentum
transfer only) and so the loop momentum is nearly same in both lines and
integrated fully over the annulus, i.e., the patch index k runs over all N val-
ues. In the second diagram, the external label i enters the loop and there is
a large momentum transfer (O(KF )). In order for both momenta in the loop
to be within the annulus, and to differ by this large q, the angle of the loop
momentum is limited to a range O(Λ/KF ). (This just means that if one mo-
mentum is from patch i the other has to be from patch j.) Similarly, in the
last loop diagram, the angle of the loop momenta is restricted to one patch.
In other words, the requirement that all loop momenta in this cut-off theory
lie in the annulus singles out only diagrams that survive in the large N limit.

The sum of bubble diagrams, singled out by the usual large-N considera-
tions, reproduces Landau’s Fermi liquid theory. For example in the case of χ,
one obtains a geometric series that sums to give χ = χ0

1+F0

.
Since in the large N limit, the one-loop β-function for the fermion-fermion

coupling is exact, it follows that the marginal nature of the Landau parameters
F and the flow of V , (20), are both exact as Λ → 0.

A long paper of mine [2] explains all this, as well as how it is to be general-
ized to anisotropic Fermi surfaces and Fermi surfaces with additional special
features and consequently additional instabilities. Polchinski [6] independently
analyzed the isotropic Fermi liquid (though not in the same detail, since it
was a just paradigm or toy model for an effective field theory for him).

4 Quantum Dots

We will now apply some of these ideas, very successful in the bulk, to two-
dimensional quantum dots [7, 9] tiny spatial regions of size L ≃ 100−200 nm,
to which electrons are restricted using gates. The dot can be connected weakly
or strongly to leads. Since many experts on dots are contributing to this
volume, I will be sparing in details and references.

Let us get acquainted with some energy scales, starting with ∆, the mean
single particle level spacing. The Thouless energy is defined as ET = �/τ ,
where τ is the time it takes to traverse the dot. If the dot is strongly coupled
to leads, this is the uncertainty in the energy of an electron as it traverses
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the dot. Consequently the g (sharply defined) states of an isolated dot within
ET will contribute to conductance and lead to a (dimensionless) conductance
g = ET

∆ .
The dots in question have two features important to us. First, motion

within the dot is ballistic: Lel, the elastic scattering length is the same as
L, the dot size, so that ET = �vF

L , where vF is the Fermi velocity. Next,
the boundary of the dot is sufficiently irregular as to cause chaotic motion
at the classical level. At the quantum level single-particle energy levels and
wavefunctions (in any basis) within ET of the Fermi energy will resemble those
of a random hamiltonian matrix and be described Random Matrix Theory
(RMT) [8]. We will only invoke a few results from RMT and they will be
explained in due course.

At a generic value of gate voltage Vg the ground state has a definite number
of particles N and energy EN . If EN+1−EN = αeVg (α is a geometry-dependent
factor) the energies of the N and N + 1-particle states are degenerate, and
a tunnelling peak occurs at zero bias. Successive peaks are separated by the
second difference of EN , called ∆2, the distribution of which is measured. Also
measured are statistics of peak-height distributions [10, 11, 12], which depend
on wavefunction statistics of RMT.

To describe the data one needs to write down a suitable hamiltonian

HU =
∑

α

εαc†αcα +
1

2

∑

αβγδ

Vαβγδc
†
αc†βcγcδ (25)

(where the subscripts label the exact single particle states including spin) and
try to extract its implications. Earlier theoretical investigations were confined
to the noninteracting limit: V ≡ 0 and missed the fact that due to the small
capacitance of the dot, adding an electron required some significant charging
energy on top of the energy of order εα it takes to promote an electron by one
level. Thus efforts have been made to include interactions [9, 13, 14, 15, 16].

The simplest model includes a constant charging energy U0N
2/2 [7, 13].

Conventionally U0 is subtracted away in plotting ∆2. This model predicts a
bimodal distribution for ∆2: Adding an electron above a doubly-filled (spin-
degenerate) level costs U0 + ε, with ε being the energy to the next single-
particle level. Adding it to a singly occupied level costs U0. While the second
contribution gives a delta-function peak at 0 after U0 has been subtracted,
the first contribution is the distribution of nearest neighbor level separation
ε, of the order of ∆. But simulations [16] and experiments [17, 18] produce
distributions for ∆2 which do not show any bimodality, and are much broader.

The next significant advance was the discovery of the Universal Hamil-
tonian [14, 15]. Here one keeps only couplings of the form Vαββα on the grounds
that only they have a non-zero ensemble average (over disorder realizations).
This seems reasonable in the limit of large g since couplings with zero average
are typically of size 1/g according to RMT. The Universal Hamiltonian is thus
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HU =
∑

α,s

εαc†α,scα,s +
U0

2
N2 − J

2
S2 + λ

(

∑

α

c†α,↑c
†
α,↓

)





∑

β

cβ,↓cβ,↑



 (26)

where s is single-particle spin and S is the total spin. The Cooper coupling λ
does not play a major role, but the inclusion of the exchange coupling J brings
the theoretical predictions [9, 14, 15] into better accord with experiments,
especially if one-body “scrambling” [19, 20, 21, 22] and finite temperature
effects are taken into account. However, some discrepancies still remain in
relation to numerical [16] and experimental results [18] at rs ≥ 2.

We now see that the following dot-related questions naturally arise. Given
that adding more refined interactions (culminating in the universal hamil-
tonian) led to better descriptions of the dot, should one not seek a more
systematic way to to decide what interactions should be included from the
outset? Does our past experience with clean systems and bulk systems tell us
how to proceed? Once we have written down a comprehensive hamiltonian,
is there a way to go beyond perturbation theory to unearth nonperturbative
physics in the dot, including possible phases and transitions between them?
What will be the experimental signatures of these novel phases and the tran-
sitions between them if indeed they do exist? These questions will now be
addressed.

4.1 Interactions and Disorder: Exact Results on the Dot

The first crucial step towards this goal was taken by Murthy and Mathur [23].
Their ideas was as follows.

• Step 1: Use the clean system RG described earlier [2] (eliminating mo-
mentum states on either side of the Fermi surface) to eliminate all states
far from the Fermi surface till one comes down to the Thouless band, that
is, within ET of EF .
We have seen that this process inevitably leads to Landau’s Fermi liquid
interaction (spin has been suppressed):

V =

∞
∑

m=0

um∆

2

∑

k,k′

cos[m(θ − θ′)]c†kckc†k′ck′ (27)

where θ, θ′ are the angles of k,k′ on the Fermi circle, and um is defined by

F (θ) =
∑

m

umeimθ . (28)

A few words before we proceed. First, some experts will point out that the
interaction one gets from the RG allows for small momentum transfer, i.e.,
there should be an additional sum over a small values q in (27) allowing
k → k + q and k′ → k′ − q. It can be shown that in the large g limit
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this sum has just one term, at q = 0. Unlike in a clean system, there is
no singular behavior associated with q → 0 and this assumption is a good
one. Others have asked how one can introduce the Landau interaction
that respects momentum conservation in a dot that does not conserve
momentum or anything else except energy. To them I say this. Just think
of a pair of molecules colliding in a room. As long as the collisions take
place in a time scale smaller than the time between collisions with the
walls, the interaction will be momentum conserving. That this is true for
a collision in the dot for particles moving at vF , subject an interaction of
range equal to the Thomas Fermi screening length (the typical range) is
readily demonstrated. Like it or not, momentum is a special variable even
in a chaotic but ballistic dot since it is tied to translation invariance, and
that that is operative for realistic collisions within the dot.

• Step 2: Switch to the exact basis states of the chaotic dot, writing the
kinetic and interaction terms in this basis. Run the RG by eliminating
exact energy eigenstates within ET .

While this looks like a reasonable plan, it is not clear how it is going to be
executed since knowledge of the exact eigenfunctions is needed to even write
down the Landau interaction in the disordered basis:

Vαβγδ = ∆
4

∑

kk′

u(θ − θ′)
[

φ∗
α(k)φ∗

β(k′) − φ∗
α(k′)φ∗

β(k)
]

× [φγ(k′)φδ(k) − φγ(k)φδ(k
′)] (29)

where k and k′ take g possible values. These are chosen as follows. Consider
the momentum states of energy within ET of EF . In a dot momentum is
defined with an uncertainty ∆k ≃ 1/L in either direction. Thus one must
form packets in k space obeying this condition. It can be easily shown that
g of them will fit into this band. One way to pick such packets is to simply
take plane waves of precise k and chop them off at the edges of the dot and
normalize the remains. The g values of k can be chosen with an angular spacing
2π/g. It can be readily verified that such states are very nearly orthogonal.
The wavefunction φδ(k) is the projection of exact dot eigenstate δ on the state
k as defined above.

We will see that one can go a long way without detailed knowledge of the
wavefunctions φδ(k).

First, one can take the view of the Universal Hamiltonian (UH) adherents
and consider the ensemble average (enclosed in 〈 〉) of the interactions. RMT
tells us that to leading order in 1/g,

〈

φ∗
α(k1)φ

∗
β(k2)φγ(k3)φδ(k4)

〉

=
δαδδβγδk1k4

δk2k3

g2
+

δαγδβδδk1k3
δk2k4

g2

+
δαβδγδδk1,−k2

δk3,−k4

g2
(30)

It is seen that only matrix elements in (29) for which the indices αβγδ are
pairwise equal survive disorder-averaging, and also that the average has no
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dependence on the energy of αβγδ. In the spinless case, the first two terms
on the right hand side make equal contributions and produce the constant
charging energy in the Universal Hamiltonian of (26), while in the spinful
case they produce the charging and exchange terms. The final term of (30)
produces the Cooper interaction of (26).

Thus the UH contains the rotationally invariant part of the Landau in-
teraction. The others, i.e., those that do not survive ensemble averaging, are
dropped because they are of order 1/g. But we have seen before in the BCS
instability of the Fermi liquid that a term that is nominally small to begin
with can grow under the RG. That this is what happens in this case was shown
by the RG calculation of Murthy and Mathur. There was however one catch.
The neglected couplings could overturn the UH description for couplings that
exceeded a critical value. However the critical value is of order unity and so
one could not trust either the location or even the very existence of this crit-
ical point based on their perturbative one-loop calculation. Their work also
gave no clue as to what lay on the other side of the critical point.

Subsequently Murthy and I [24] showed that the methods of the large N
theories (with g playing the role of N) were applicable here and could be
used to show nonperturbatively in the interaction strength that the phase
transition indeed exists. This approach also allowed us to study in detail the
phase on the other side of the transition, as well as what is called the quantum
critical region, to be described later.

Let us now return to Murthy and Mathur and ask how the RG flow is
derived. After integrating some of the g states within ET , we end up with
g′ = ge−t states. Suppose we compute a scattering amplitude Γαβγδ for the
process in which two fermions originally in states αβ are scattered into states
γδ. This scattering can proceed directly through the vertex Vαβγδ(t), or via
intermediate virtual states higher order in the interactions, which can be clas-
sified by a set of Feynman diagrams, as shown in Fig. 5. All the states in the
diagrams belong to the g′ states kept. We demand that the entire amplitude
be independent of g′, meaning that the physical amplitudes should be the same
in the effective theory as in the original theory. This will lead to a set of flow

=
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+ 

α

α

α βαα ββ
β

β

γ
γ

 γ δ
γ

γδ
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δ
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ν
...

Fig. 5. Feynman diagrams for the full four-point amplitude Γαβγδ
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equations for the Vαβγδ. In principle this flow equation will involve all powers
of V but we will keep only quadratic terms (the one-loop approximation).
Then the diagrams are limited to the ones shown in Fig. 5, leading to the
following contributions to the scattering amplitude Γαβγδ

Γαβγδ = Vαβγδ

+
∑

µ,ν

′NF (ν) − NF (µ)

εµ − εν

(

VανµδVβµνγ − VανµγVβµνδ

)

−
∑

µν

′ 1 − NF (µ) − NF (ν)

εµ + εν
VαβµνVνµγδ (31)

where the prime on the sum reminds us that only the g′ remaining states are
to be kept and where NF (α) is the Fermi occupation of the state α. We will
confine ourselves to zero temperature where this number can only be zero
or one. The matrix element Vαβγδ now explicitly depends on the RG flow
parameter t.

Now we demand that upon integrating the two states at ±g′∆/2 we recover
the same Γαβγδ. Clearly, since g′ = ge−t,

d

dt
= −g′

δ

δg′
(32)

The effect of this differentiation on the loop diagrams is to fix one of the
internal lines of the loop to be at the cutoff ±g′∆/2, while the other one
ranges over all smaller values of energy. In the particle-hole diagram, since µ
or ν can be at +g′∆/2 or −g′∆/2, and the resulting summations are the same
in all four cases, we take a single contribution and multiply by a factor of 4.
The same reasoning applies to the Cooper diagram. Let us define the energy
cutoff Λ = g′∆/2 to make the notation simpler. Since we are integrating out
two states we have δg′ = 2

0 =
dVαβγδ

dt

− g′

2
4

∑

µ=Λ,ν

′ NF (ν) − NF (µ)

εµ − εν

(

VανµδVβµνγ − VανµγVβµνδ

)

+
g′

2
4

∑

µ=Λ,ν

′ 1 − NF (µ) − NF (ν)

εµ + εν
VαβµνVνµγδ (33)

where µ = Λ means εµ = Λ and so on. The changed sign in front of the 1-loop
diagrams reflects the sign of (32)

So far we have not made any assumptions about the form of Vαβγδ, and
the formulation applies to any finite system. In a generic system such as an
atom, the matrix elements depend very strongly on the state being integrated
over, and the flow must be followed numerically for each different set αβγδ
kept in the low-energy subspace.
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In our problem things have become so bad that are good once again: the
wavefunctions φ(k) that enter the matrix elements above have so scrambled
up by disorder that they can be handled by RMT. In particular it is possible to
argue that the sum over the g′ terms may be replaced by it ensemble average.
In other words the flow equation is self-averaging. While the most convincing
way to show this is to compute its variance, and see that it is of order 1/

√
g

times its average, this fact can be motivated in the following way: There is a
sum over g′ ≫ 1 values of ν with a slowly varying energy denominator, which
makes the sum over ν similar to a spectral average, which in RMT is the same
as an average over the disorder ensemble. A more sophisticated argument is
presented in [25]. We can use the result

〈

φ∗
µ(p1)φ

∗
ν(p2)φν(p3)φµ(p4)

〉

=
δ14δ23

g2
− δ13δ24

g3
− δ1,−2δ3,−4

g3
(34)

to deal with the product of four wavefunctions inside the loop and deal with
the energy sum as follows:

0
∑

εν=−Λ

1

Λ + |εν |
≈

Λ
∫

0

dε

∆

1

Λ + ε
=

ln 2

∆
(35)

We are exploiting the fact that wavefunction correlations are energy indepen-
dent in the large -g limit.

After we make this simplifications we find that there are many kinds of
terms of which one kind dominates in the large -g limit.

Let us go back to the properly antisymmetrized matrix element defined in
terms of the Fermi liquid interaction function (29). Since there is a product
of two V ’s in each loop diagram, and each V contains 4 terms, it is clear that
each loop contribution has 16 terms. Let us first consider a term of the leading
type in the particle-hole diagram, which survives in the large-g limit. Putting
in the full wavefunction dependencies (and ignoring factors other than g, g′)
we have the following contribution from this type of term

dVαβγδ

dt Leading
= g′∆2

0
∑

ν=−Λ

1

Λ + |εν |
∑

kk′

∑

pp′

u
(

θk − θp

)

u
(

θp′ − θk′

)

×φ∗
α(k)φ∗

β(k′)φγ(k′)φδ(k)φ∗
µ(p)φ∗

ν(p′)φν(p)φµ(p′) (36)

Substituting the appropriate momentum labels for the particle-hole dia-
gram in (34), we see that the wavefunction average relevant to the sum over
intermediate states is

δpp′

g2
− 1 + δp,−p′

g3
(37)

Using the self-averaging, the first term of (37) forces p = p′ in (36). For
large g, using



RG for Interacting Fermions 19

∑

p

= g

∫

dθp

2π
(38)

we obtain a convolution of the two Fermi liquid functions

∑

p

u(θk − θp)u(θp − θk′) = g

(

u2
0 +

1

2

∞
∑

m=1

u2
m cos m(θ − θ′)

)

(39)

where we have reverted to the notation θ = θk, θ′ = θk′ . In the second term of
(37), the δp,−p′ turns out to be subleading, while the other allows independent
sums over p,p′. This means that only u0 contributes to this term, (other
avrerage to zero upon summing over all angles) which produces

−
∑

pp′

u(θk − θp)u(θp′ − θk′) = g2u2
0 (40)

Feeding this into full expression for this contribution to the particle-hole
diagram, we find it to be

dVαβγδ

dt Leading
=

g′

g
∆ ln 2

∑

kk′

(

∞
∑

m=1

u2
m cos m(θ − θ′)

)

φ∗
α(k)φ∗

β(k′)φγ(k′)φδ(k) (41)

Notice that the result is still of the Fermi liquid form. In other words the cou-
plings Vαβγδ which were written in terms of Landau parameters um, flow into
renormalized coupling once again expressible in terms of renormalized Landau
parameters. By comparing the two sides, we see each um flows independently
of the others as per

dum

dt
= −e−t(ln 2)u2

m m �= 0 (42)

The above equation can be written in a more physically transparent form
by using a rescaled variable (for m �= 0 only)

ũm = e−tum (43)

in terms of which the flow equation becomes

dũm

dt
= −ũm − (ln 2)ũ2

m ≡ β(ũm) (44)

where the last is a definition of the β-function.
The reason uo does not flow is that the corresponding interaction com-

mutes with the one-body “kinetic” part, and therefore does not suffer quan-
tum fluctuations.

This is the answer at large g. We have dropped subleading contributions
of the following type:
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dVαβγδ

dt

∣

∣

∣

∣

sub
= −g′∆2

0
∑

ν=−Λ

1

Λ + |εν |

[

∑

kk′

∑

pp′

u(θk − θp)u(θp′ − θk′)

×φ∗
α(p)φ∗

β(k′)φγ(k′)φδ(k)φ∗
µ(k)φ∗

ν(p′)φν(p)φµ(p′)

]

(45)

Note that the momentum labels of φ∗
α and φ∗

µ have been exchanged com-
pared to (36) and there is a minus sign, both coming from the antisymmetriza-
tion of (29). Once again we ensemble average the internal µ, ν sum, the wave-
function part of which gives

〈

φ∗
µ(k)φ∗

ν(p′)φν(p)φµ(p′)
〉

=
δkp′δpp′

g2
− δkp + δk,−p′δp,−p′

g3
(46)

It is clear that there is an extra momentum restriction in each term com-
pared to (37), which means that one can no longer sum freely over p to get
the factor of g in (39), or the factor of g2 in (40). Therefore this contribution
will be down by 1/g compared to that of (36).

Turning now to the Cooper diagrams, the internal lines are once again
forced to have the same momentum labels as the external lines by the Fermi
liquid vertex, therefore they do not make any leading contributions.

The general rule is that whenever a momentum label corresponding to an
internal line in the diagram (here µ and ν) is forced to become equal to a
momentum label corresponding to an external disorder label (here α, β, γ, or
δ), the diagram is down by 1/g, exactly as in the 1/N expansion. The fact that
1/g plays the role of 1/N was first realized by Murthy and Shankar [24]. Not
only did this mean that the one loop flow of Murthy and Mathur was exact,
it meant the disorder-interaction problem of the chaotic dot could be solved
exactly in the large g limit. It is the only known case where the problem of
disorder and interactions [26, 27, 28] can be handled exactly.

From (44) it can be seen that positive initial values of ũm (which are
equal to initial values of um inherited from the bulk) are driven to the fixed
point at ũm = 0, as are negative initial values as long as um(t = 0) ≥ u∗

m =
−1/ ln 2. Thus, the Fermi liquid parameters are irrelevant for this range of
starting values. Recall that setting all um = 0 for m �= 0 results in the
Universal Hamiltonian. Thus, the range um ≥ u∗

m is the basin of attraction
of the Universal Hamiltonian. On the other hand, for um(t = 0) ≤ u∗

m results
in a runaway flow towards large negative values of um, signalling a transition
to a phase not perturbatively connected to the Universal Hamiltonian.

Since we have a large N theory here (with N = g), the one-loop flow and
the new fixed point at strong coupling are parts of the final theory.1 What is

1 However the exact location of the critical point cannot be predicted, as pointed
out to us by Professor Peet Brower. The reason is that the Landau couplings
um are defined at a scale EL much higher than ET (but much smaller than EF )
and their flow till we come down to ET , where our analysis begins, is not within
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the nature of the state for um(t = 0) ≤ u∗
m? The formalism and techniques

needed to describe that are beyond what was developed in these lectures,
which has focused on the RG. Suffice it to say that it is possible to write
the partition function in terms of a new collective field σ (which depends
on all the particles) and that the action S(σ) has a factor g in front of it,
allowing us to evaluate the integral by saddle point(in the limit g → ∞),
to confidently predict the strong coupling phase and many of its properties.
Our expectations based on the large g analysis have been amply confirmed
by detailed numerical studies [25]. For now I will briefly describe the new
phenomenon in qualitative terms for readers not accustomed to these ideas
and give some references for those who are.

In the strong coupling region σ acquires an expectation value in the ground
state. The dynamics of the fermions is affected by this variable in many ways:
quasi-particle widths become broad very quickly above the Fermi energy, the
second difference ∆2 has occasionally very large values and can even be neg-
ative2, and the system behaves like one with broken time-reversal symmetry
if m is odd.

Long ago Pomeranchuk [29] found that if a Landau function of a pure
system exceeded a certain value, the fermi surface underwent a shape trans-
formation from a circle to an non-rotationally invariant form. Recently this
transition has received a lot of attention [30, 31] The transition in question is
a disordered version of the same. Details are given in [24, 25].

Details aside, there is another very interesting point: even if the coupling
does not take us over to the strong-coupling phase, we can see vestiges of the
critical point u∗

m and associated critical phenomena. This is a general feature
of many quantum critical points [32], i.e., points like u∗

m where as a variable
in a hamiltonian is varied, the system enters a new phase (in contrast to
transitions wherein temperature T is the control parameter).

Figure 6 shows what happens in a generic situation. On the x-axis a vari-
able (um in our case) along which the quantum phase transition occurs. Along
y is measured a new variable, usually temperature T . Let us consider that case
first. If we move from right to left at some value of T , we will first encounter
physics of the weak-coupling phase determined by the weak-coupling fixed
point at the origin. Then we cross into the critical fan (delineated by the
V -shaped dotted lines), where the physics controlled by the quantum criti-
cal point. In other words we can tell there is a critical point on the x-axis

the regime we can control. In other words we can locate u∗ in terms of what
couplings we begin with, but these are the Landau parameters renormalized in a
nonuniversal way as we come down from EL to ET .

2 How can the cost of adding one particle be negative (after removing the charging
energy)? The answer is that adding a new particle sometimes lowers the energy
of the collective variable which has a life of its own. However, if we turn a blind
eye to it and attribute all the energy to the single particle excitations, ∆2 can be
negative.
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u
u∗

critical fan

symmetricbroken

1/g

Fig. 6. The generic phase diagram for a second-order quantum phase transition.
The horizontal axis represents the coupling constant which can be tuned to take one
across the transition. The vertical axis is usually the temperature in bulk quantum
systems, but is 1/g here, since in our system one of the roles played by g is that of
the inverse temperature

without actually traversing it. As we move further to the left, we reach the
strongly-coupled symmetry-broken phase, with a non-zero order parameter.

It can be shown that in our problem, 1/g plays the role of T . One way to see
is this that in any large N theory N stands in front of the action when written
in terms of the collective variable. That is true in this case well for g. (Here g
also enters at a subdominant level inside the action, which makes it hard to
predict the exact shape of the critical fan. The bottom line is that we can see
the critical point at finite 1/g. In addition one can also raise temperature or
bias voltage to see the critical fan.

Subsequent work has shown, in more familiar examples that Landau in-
teractions, that the general picture depicted here is true in the large g limit:
upon adding sufficiently strong interactions the Universal Hamiltonian gives
way to other descriptions with broken symmetry [33, 34].3
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3 The only result that is not exact in the large g limit is the critical value u∗

m

since the input value of um at ET is related in a non-universal way to the Landau
parameter. In other words, the Landau coupling um settles down to its fixed point
value at an energy scale that is much larger than ET . We do not know how it
flows as we reach energies inside ET wherein our RMT assumptions are valid.
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The spin of an electron placed in a magnetic field provides a natural two-
level system suitable as a qubit in a quantum computer [1]. In this work, we
describe the experimental steps we have taken towards using a single electron
spin, trapped in a semiconductor quantum dot, as such a spin qubit [2].

The outline is as follows. Section 1 serves as an introduction into quantum
computing and quantum dots. Section 2 describes the development of the
“hardware” for the spin qubit: a device consisting of two coupled quantum
dots that can be filled with one electron (spin) each, and flanked by two
quantum point contacts (QPCs). The system can be probed in two different
ways, either by performing conventional measurements of transport through
one dot or two dots in series, or by using a QPC to measure changes in the
(average) charge on each of the two dots. This versatility has proven to be
very useful, and the type of device shown in this section was used for all
subsequent experiments.

In Sect. 3, it is shown that we can determine all relevant parameters of
a quantum dot even when it is coupled very weakly to only one reservoir.
In this regime, inaccessible to conventional transport experiments, we use a
QPC charge detector to determine the tunnel rate between the dot and the
reservoir. By measuring changes in the effective tunnel rate, we can determine
the excited states of the dot.

In Sect. 4, the QPC as a charge detector is pushed to a faster regime
(∼100 kHz), to detect single electron tunnel events in real time. We also de-
termine the dominant contributions to the noise, and estimate the ultimate
speed and sensitivity that could be achieved with this very simple method of
charge detection.

In Sect. 5, we develop a technique to perform single-shot measurement of
the spin orientation of an individual electron in a quantum dot. This is done by

J.M. Elzerman et al.: Semiconductor Few-Electron Quantum Dots as Spin Qubits,
Lect. Notes Phys. 667, 25–95 (2005)
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combining fast QPC charge detection with “spin-to-charge conversion”. This
fully electrical technique to read out a spin qubit is then used to determine
the relaxation time of the single spin, giving a value of 0.85ms at a magnetic
field of 8 Tesla.

Finally, Sect. 6 puts the results in perspective, arriving at a realistic path
towards the experimental demonstration of single- and two-qubit gates and
the creation of entanglement of spins in quantum dot systems.

1 Introduction

This section gives a brief introduction into quantum computing, continuing
with a description of semiconductor quantum dots that covers their fabrication
as well as their electronic behavior. We also describe our experimental setup
for performing low-temperature transport experiments to probe such quantum
dots.

1.1 Quantum Computing

More than three quarters of a century after its birth, quantum mechanics re-
mains in many ways a peculiar theory [3]. It describes many physical effects
and properties with great accuracy, but uses unfamiliar concepts like super-
position, entanglement and projection, that seem to have no relation with the
everyday world around us. The interpretation of these concepts can still cause
controversy.

The inherent strangeness of quantum mechanics already emerges in the
simplest case: a quantum two-level system. Unlike a classical two-level system,
which is always either in state 0 or in state 1, a quantum two-level system can
just as well be in a superposition of states |0〉 and |1〉. It is, in some sense, in
both states at the same time.

Even more exotic states can occur when two such quantum two-level sys-
tems interact: the two systems can become entangled. Even if we know the
complete state of the system as a whole, for example (|01〉 − |10〉)/

√
2, which

tells us all there is to know about it, we cannot know the state of the two
subsystems individually. In fact, the subsystems do not even have a definite
state! Due to this strong connection between the two systems, a measurement
made on one influences the state of the other, even though it may be arbitrar-
ily far away. Such spooky non-local correlations enable effects like “quantum
teleportation” [4, 5].

Finally, the concept of measurement in quantum mechanics is rather spe-
cial. The evolution of an isolated quantum system is deterministic, as it is
governed by a first order differential equation – the Schrödinger equation.
However, coupling the quantum system to a measurement apparatus forces
it into one of the possible measurement eigenstates in an apparently non-
deterministic way: the particular measurement outcome is random, only the
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probability for each outcome can be determined [3]. The question of what
exactly constitutes a measurement is still not fully resolved [6].

These intriguing quantum effects pose fundamental questions about the
nature of the world we live in. The goal of science is to explore these questions.
At the same time, this also serves a more opportunistic purpose, since it might
allow us to actually use the unique features of quantum mechanics to do
something that is impossible from the classical point of view.

And there are still many things that we cannot do classically. A good ex-
ample is prime-factoring of large integers: it is easy to take two prime numbers
and compute their product. However, it is difficult to take a large integer and
find its prime factors. The time it takes any classical computer to solve this
problem grows exponentially with the number of digits. By making the integer
large enough, it becomes essentially impossible for any classical computer to
find the answer within a reasonable time – such as the lifetime of the universe.
This fact is used in most forms of cryptography nowadays [7].

In 1982, Richard Feynman speculated [8] that efficient algorithms to solve
such hard computational problems might be found by making use of the
unique features of quantum systems, such as entanglement. He envisioned
a set of quantum two-level systems that are quantum mechanically coupled to
each other, allowing the system as a whole to be brought into a superposition
of different states. By controlling the Hamiltonian of the system and therefore
its time-evolution, a computation might be performed in fewer steps than is
possible classically. Essentially, such a quantum computer could take many
computational steps at once; this is known as “quantum parallelism”.

A simplified view of the difference between a classical and a quantum
computer is shown in Fig. 1. A one-bit classical computer is a machine that

f f (0)0

f f (1)1

F10 + 10 +F F

f f (00)00

f f (01)01

F
0100 +

0100 +F F

f f (10)10

f f (11)11

1110 ++
10+F 11F+

a b1 (qu)bit 2 (qu)bits

Fig. 1. Difference between a classical and a quantum computer. (a) To determine
the function f for the two possible input states 0 and 1, a one-bit classical computer
needs to evaluate the function twice, once for every input state. In contrast, a one-
qubit quantum computer can have a superposition of |0〉 and |1〉 as an input, to end
up in a superposition of the two output values, F |0〉 and F |1〉. It has taken only half
the number of steps as its classical counterpart. (b) Similarly, a two-qubit quantum
computer needs only a quarter of the number of steps that are required classically.
The computing power of a quantum computer scales exponentially with the number
of qubits, for a classical computer the scaling is only linear
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takes one input value, 0 or 1, and computes the corresponding output value,
f(0) or f(1). A quantum computer with one quantum bit (or “qubit”) could
take as an input value a superposition of |0〉 and |1〉, and due to the linearity
of quantum mechanics the output would be a superposition of F |0〉 and F |1〉.
So, in a sense it has performed two calculations in a single step. For a two-
qubit system, the gain becomes even more significant: now the input can be
a superposition of four states, so the quantum computer can perform four
calculations in one step. In fact, it can be proved [9] that the computing
power of a quantum computer scales exponentially with the number of qubits,
whereas this scaling is only linear for a classical computer. Therefore, a large
enough quantum computer can outperform any classical computer.

It might appear that a fundamental problem has been overlooked: accord-
ing to quantum mechanics, a superposition of possible measurement outcomes
can only exist before it is measured, and the measurement gives only one actual
outcome. The exponential computing power thus appears inaccessible. How-
ever, by using carefully tailored quantum algorithms, an exponential speed-up
can be achieved for some problems such as factoring integers [10] or simulat-
ing a quantum system [11]. For other tasks, such as searching a database, a
quadratic speed-up is possible [12]. Using such quantum algorithms, a quan-
tum computer can indeed be faster than a classical one.

Another fundamental problem is the interaction of the quantum system
with the (uncontrolled) environment, which inevitably disturbs the desired
quantum evolution. This process, known as “decoherence”, results in errors
in the computation. Additional errors are introduced by imperfections in the
quantum operations that are applied. All these errors propagate, and after
some time the state of the computer will be significantly different from what
it should be. It would seem that this prohibits any long computations, mak-
ing it impossible for a quantum computer to use its exponential power for a
non-trivial task. Fortunately, it has been shown that methods to detect and
correct any errors exist [13, 14], keeping the computation on track. Of course,
such methods only help if the error rate is small enough, since otherwise the
correction operations create more errors than they remove. This sets a so-
called “accuracy threshold” [15, 16], which is currently believed to be around
10−4. If the error per quantum operation is smaller than this threshold, any
errors can be corrected and an arbitrarily long computation is possible.

Due to the development of quantum algorithms and error correction, quan-
tum computation is feasible from a theoretical point of view. The challenge
is building an actual quantum computer with a sufficiently large number of
coupled qubits. Probably, more than a hundred qubits will be required for
useful computations, but a system of about thirty qubits might already be
able to perform valuable simulations of quantum systems.



Semiconductor Few-Electron Quantum Dots as Spin Qubits 29

1.2 Implementations

A number of features are required for building an actual quantum com-
puter [17]:

1. A scalable physical system with well-characterized qubits
2. A “universal” set of quantum gates to implement any algorithm
3. The ability to initialize the qubits to a known pure state
4. A qubit-specific measurement capability
5. Decoherence times much longer than the gate operation time

Many systems can be found which satisfy some of these criteria, but it is
very hard to find a system that satisfies all of them. Essentially, we have to
reconcile the conflicting demands of good access to the quantum system (in
order to perform fast and reliable operations or measurements) with sufficient
isolation from the environment (for long coherence times). Current state-of-
the-art is a seven-bit quantum computer that has factored the number 15 into
its prime factors 3 and 5, in fewer steps than is possible classically [18]. This
was done using an ensemble of molecules in liquid solution, with seven nuclear
spins in each molecule acting as the seven qubits. These could be controlled
and read out using nuclear magnetic resonance (NMR) techniques. Although
this experiment constitutes an important proof-of-principle for quantum com-
puting, practical limitations do not allow the NMR approach to be scaled up
to more than about ten qubits.

Therefore, many other implementations are currently being studied [19].
For instance, trapped ions have been used to demonstrate a universal set of
one- and two-qubit operations, an elementary quantum algorithm, as well as
entanglement of up to three qubits and quantum teleportation [19]. Typically,
microscopic systems such as atoms or ions have excellent coherence properties,
but are not easily accessible or scalable – on the other hand, larger systems
such as solid-state devices, which can be accessed and scaled more easily, usu-
ally lack long decoherence times. A solid-state device with a long decoherence
time would represent the best of both worlds. Such a system could be provided
by the spin of an electron trapped in a quantum dot: a spin qubit.

1.3 The Spin Qubit

Our programme to build a solid-state qubit follows the proposal by Loss and
DiVincenzo [2]. This describes a quantum two-level system defined by the spin
orientation of a single electron trapped in a semiconductor quantum dot. The
electron spin can point “up” or “down” with respect to an external magnetic
field. These eigenstates, | ↑〉 and | ↓〉, correspond to the two basis states of the
qubit.

The quantum dot that holds the electron spin is defined by applying neg-
ative voltages to metal surface electrodes (“gates”) on top of a semiconductor
(GaAs/AlGaAs) heterostructure (see Fig. 2). Such gated quantum dots are
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Fig. 2. Schematic picture of the spin qubit as proposed by Loss and DiVincenzo [2].
The array of metal electrodes on top of a semiconductor heterostructure, containing
a two-dimensional electron gas (2DEG) below the surface, defines a number of quan-
tum dots (dotted circles), each holding a single electron spin (arrow). A magnetic
field, B, induces a Zeeman splitting between the spin-up and spin-down states of
each electron spin. The spin state is controlled either via an oscillating magnetic
field, Bac (on resonance with the Zeeman splitting), or via an oscillating electric
field created with the back gates, which can pull the electron wavefunction into a
layer with a large g-factor. Coupling between two spins is controlled by changing
the voltage on the electrodes between the two dots (Adapted from [2])

very controllable and versatile systems, which can be manipulated and probed
electrically. Increasing the number of dots is straightforward, by simply adding
more electrodes. Tuning all these gate voltages allows control of the number
of electrons trapped on each dot, as well as the tunnel coupling between the
dots. With the external magnetic field, B, we can tune the Zeeman splitting,
∆EZ = gµBB, where g ≈ −0.44 is the g-factor of GaAs, and µB = 9.27×10−24

J/T is the Bohr magneton. In this way, we can control the energy levels of
the qubit.

To perform single-qubit operations, different techniques are available. We
can apply a microwave magnetic field on resonance with the Zeeman splitting,
i.e. with a frequency f = ∆EZ/h, where h is Planck’s constant. The oscillat-
ing magnetic component perpendicular to the static magnetic field B results
in a spin nutation. By applying the oscillating field for a fixed duration, a su-
perposition of | ↑〉 and | ↓〉 can be created. This magnetic technique is known
as electron spin resonance (ESR).

A completely electrical alternative might be the emerging technique of g-
tensor modulation [20]. In this scheme, an oscillating electric field is created
by modulating the voltage applied to a (back) gate. The electric field does not
couple to the spin directly, but it can push or pull the electron wavefunction
somewhat into another semiconductor layer with a different g-factor. This
procedure modulates the effective g-tensor felt by the electron spin. If the
modulation frequency is resonant with the Zeeman splitting, the required
spin nutation results and superpositions of spin states can again be created.
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Two-qubit operations can be carried out purely electrically, by varying
the gate voltages that control the potential barrier between two dots. It has
been shown [2] that the system of two electron spins on neighboring dots,
coupled via a tunnel barrier, can be mapped onto the Heisenberg exchange
Hamiltonian H = JS1 ·S2. This Hamiltonian describes an indirect interaction
between the two spins, S1 and S2, mediated by the exchange interaction, J ,
which depends on the wavefunction overlap of the electrons. By lowering the
tunnel barrier for some time and then raising it again, the effective spin-spin
interaction is temporarily turned on. In this way, the two electron spins can
be swapped or even entangled. Together with arbitrary single-spin rotations,
the exchange interaction can be used to construct a universal set of quantum
gates [2].

A last crucial ingredient is a method to read out the state of the spin qubit.
This implies measuring the spin orientation of a single electron – a daunting
task, since the electron spin magnetic moment is exceedingly small. Therefore,
an indirect spin measurement is proposed [2]. First the spin orientation of the
electron is correlated with its position, via “spin-to-charge conversion”. Then
an electrometer is used to measure the position of the charge, thereby revealing
its spin. In this way, the problem of measuring the spin orientation has been
replaced by the much easier measurement of charge.

The essential advantage of using the electron’s spin degree of freedom
to encode a qubit, lies in the fact that the spin is disturbed only weakly
by the environment. The main source of spin decoherence and relaxation is
predicted to be the phonon bath, which is coupled to the spin via the (weak)
spin-orbit interaction [21, 22, 23]. In addition, fluctuations in the nuclear-
spin configuration couple to the electron spin via the (even weaker) hyperfine
coupling [21, 24]. In contrast, the electron’s charge degree of freedom is much
easier to manipulate and read out, but it is coupled via the strong Coulomb
interaction to charge fluctuations, which are the source of the ubiquitous 1/f
noise in the “dirty” semiconductor environment. This leads to typical charge
decoherence times of a few nanoseconds [25, 26]. The spin decoherence and
relaxation times are predicted to be about four orders of magnitude longer [22].

Finally, it should be stressed that our efforts to create a spin qubit are
not purely application-driven. Aside from the search for a spin quantum com-
puter, many interesting questions await exploration. If we have the ability to
(coherently) control and read out a single electron spin in a quantum dot, this
spin could be used as a local probe of the semiconductor environment. This
could shed light for instance on many details of the spin-orbit interaction or
the hyperfine coupling.

1.4 Quantum Dots

In this paragraph, the properties of semiconductor quantum dots are described
in more detail [27]. In essence, a quantum dot is simply a small box that can
be filled with electrons. The box is coupled via tunnel barriers to a source
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Fig. 3. Schematic picture of a quantum dot in a lateral (a) and a vertical
(b) geometry. The quantum dot (represented by a disk) is connected to source
and drain contacts via tunnel barriers, allowing the current through the device, I,
to be measured in response to a bias voltage, VSD and a gate voltage, Vg

and drain reservoir, with which particles can be exchanged (see Fig. 3). By
attaching current and voltage probes to these reservoirs, we can measure the
electronic properties of the dot. The box is also coupled capacitively to one or
more “gate” electrodes, which can be used to tune the electrostatic potential of
the dot with respect to the reservoirs. When the size of the box is comparable
to the wavelength of the electrons that occupy it, the system exhibits a discrete
energy spectrum, resembling that of an atom. As a result, quantum dots
behave in many ways as artificial atoms.

Because a quantum dot is such a general kind of system, there exist quan-
tum dots of many different sizes and materials: for instance single molecules
trapped between electrodes, metallic or superconducting nanoparticles, self-
assembled quantum dots, semiconductor lateral or vertical dots, and even
semiconducting nanowires or carbon nanotubes between closely spaced elec-
trodes. In this work, we focus on lateral (gated) semiconductor quantum dots.
These lateral devices allow all relevant parameters to be controlled in the fab-
rication process, or tuned in situ.

Fabrication of gated quantum dots starts with a semiconductor het-
erostructure, a sandwich of different layers of semiconducting material (see
Fig. 4a). These layers, in our case GaAs and AlGaAs, are grown on top of each
other using molecular beam epitaxy (MBE), resulting in very clean crystals.
By doping the n-AlGaAs layer with Si, free electrons are introduced. These ac-
cumulate at the interface between GaAs and AlGaAs, typically 100 nm below
the surface, forming a two-dimensional electron gas (2DEG) – a thin (10 nm)
sheet of electrons that can only move along the interface. The 2DEG can have
a high mobility and relatively low electron density (typically 105–106 cm2/Vs
and ∼3 × 1015 m−2, respectively). The low electron density results in a large
Fermi wavelength (∼40 nm) and a large screening length, which allows us to
locally deplete the 2DEG with an electric field. This electric field is created
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Fig. 4. Confining electrons in a semiconductor. (a) Semiconductor heterostructure
containing a 2DEG (indicated in white) approximately 100 nm below the surface,
at the interface between GaAs and AlGaAs. The electrons in the 2DEG result from
Si donors in the n-AlGaAs layer. (The thickness of the different layers is not to
scale.) (b) By applying negative voltages to the metal electrodes on the surface
of the heterostructure, the underlying 2DEG can be locally depleted. In this way,
electrons can be confined to one or even zero dimensions

by applying (negative) voltages to metal gate electrodes on top of the het-
erostructure (Fig. 4b).

To fabricate these electrodes, we first spin a layer of organic resists
(typically poly-methyl-methacrylate, PMMA) on the heterostructure surface
(Fig. 5a). Then the gate pattern is defined by writing with a focused elec-
tron beam in the electron-sensitive resist. This locally breaks up the polymer
chains, so that the exposed parts can be removed by a developer. (Note that
there is some undercut of the bottom resist layer, caused by electrons backscat-
tering from the heterostructure during exposure to the electron beam.) In the
next step, metal is evaporated, which only makes contact to the heterostruc-
ture at the places where the resist has been exposed and removed. In our
devices, the metal gates consist of a thin (5 nm) “sticking” layer of titanium,
with a 30 nm layer of gold on top. In the final so-called “lift-off” step, the
remaining resist is removed with acetone. Now metal electrodes are left at the
places that were exposed to the electron beam.

resist

heterostructure

e-beam after
development

metal
evaporation after

lift-off

a b c d

Fig. 5. Fabrication of metal electrodes on the surface of the heterostructure.
(a) Writing a pattern in the resist layer with an electron beam. (b) After devel-
oping, the resist has been locally removed. (c) Evaporating metal. (d) After lift-off,
a metal electrode remains
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Fig. 6. Lateral quantum dot device defined by metal surface electrodes.
(a) Schematic view of a device. Negative voltages applied to metal gate electrodes
(dark gray) lead to depleted regions (white) in the 2DEG (light gray). Ohmic con-
tacts (light gray columns) enable bonding wires (not shown) to make electrical con-
tact to the 2DEG reservoirs. (b) Scanning electron microscope image of an actual
device, showing the gate electrodes (light gray) on top of the surface (dark gray).
The two white dots indicate two quantum dots, connected via tunable tunnel barri-
ers to a source (S) and drain (D) reservoir, indicated in white. The two upper gates
can be used to create two quantum point contacts, in order to detect changes in the
number of electrons on the dot

The electron beam can accurately write very small patterns with a reso-
lution of about 20 nm, allowing us to make very complicated gate structures
(Fig. 6). By applying negative voltages to the gates, the 2DEG is locally
depleted, creating one or more small islands that are isolated from the large
2DEG reservoirs. These islands are the quantum dots. In order to probe them,
we need to make electrical contact to the reservoirs. For this, we use rapid
thermal annealing to diffuse AuGeNi from the surface to the 2DEG below.
This forms ohmic contacts that connect the 2DEG source and drain reser-
voirs electrically to metal bonding pads on the surface. Metal wires bonded to
these pads run toward the current or voltage probes, enabling us to perform
transport measurements.

1.5 Transport Though Quantum Dots

We use two different ways to probe the behavior of electrons on a quantum
dot. In this work, we mostly rely on a nearby quantum point contact (QPC) to
detect changes in the number of electrons on the dot. In addition, we can per-
form conventional transport experiments. These experiments are conveniently
understood using the constant interaction (CI) model [27]. This model makes
two important assumptions. First, the Coulomb interactions among electrons
in the dot are captured by a single constant capacitance, C. This is the total
capacitance to the outside world, i.e. C = CS + CD + Cg, where CS is the
capacitance to the source, CD that to the drain, and Cg to the gate. Second,
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the discrete energy spectrum is independent of the number of electrons on the
dot. Under these assumptions the total energy of a N -electron dot with the
source-drain voltage, VSD, applied to the source (and the drain grounded), is
given by

U(N) =
[−|e|(N − N0) + CSVSD + CgVg]

2

2C
+

N
∑

n=1

En(B) (1)

where −|e| is the electron charge and N0 the number of electrons in the
dot at zero gate voltage, which compensates the positive background charge
originating from the donors in the heterostructure. The terms CSVSD and
CgVg can change continuously and represent the charge on the dot that is
induced by the bias voltage (through the capacitance CS) and by the gate
voltage Vg (through the capacitance Cg), respectively. The last term of (1)
is a sum over the occupied single-particle energy levels En(B), which are
separated by an energy ∆En = En−En−1. These energy levels depend on the
characteristics of the confinement potential. Note that, within the CI model,
only these single-particle states depend on magnetic field, B.

To describe transport experiments, it is often more convenient to use the
electrochemical potential. This is defined as the energy required to add an
electron to the quantum dot:

µ(N) ≡ U(N)−U(N − 1) =

(

N − N0 −
1

2

)

EC − EC

|e| (CSVSD +CgVg)+EN

where EC = e2/C is the charging energy. The electrochemical potential for
different electron numbers N is shown in Fig. 7a. The discrete levels are spaced
by the so-called addition energy:

Eadd(N) = µ(N + 1) − µ(N) = EC + ∆E . (2)

The addition energy consists of a purely electrostatic part, the charging energy
EC , plus the energy spacing between two discrete quantum levels, ∆E. Note
that ∆E can be zero, when two consecutive electrons are added to the same
spin-degenerate level.

Of course, for transport to occur, energy conservation needs to be satisfied.
This is the case when an electrochemical potential level falls within the “bias
window” between the electrochemical potential (Fermi energy) of the source
(µS) and the drain (µD), i.e. µS ≥ µ ≥ µD with −|e|VSD = µS − µD. Only
then can an electron tunnel from the source onto the dot, and then tunnel
off to the drain without losing or gaining energy. The important point to
realize is that since the dot is very small, it has a very small capacitance
and therefore a large charging energy – for typical dots EC ≈ a few meV.
If the electrochemical potential levels are as shown in Fig. 7a, this energy is
not available (at low temperatures and small bias voltage). So, the number of
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Fig. 7. Schematic diagrams of the electrochemical potential of the quantum dot
for different electron numbers. (a) No level falls within the bias window between
µS and µD, so the electron number is fixed at N − 1 due to Coulomb blockade.
(b) The µ(N) level is aligned, so the number of electrons can alternate between N
and N − 1, resulting in a single-electron tunneling current. The magnitude of the
current depends on the tunnel rate between the dot and the reservoir on the left,
ΓL, and on the right, ΓR. (c) Both the ground-state transition between N − 1 and
N electrons (black line), as well as the transition to an N -electron excited state
(gray line) fall within the bias window and can thus be used for transport (though
not at the same time, due to Coulomb blockade). This results in a current that is
different from the situation in (b). (d) The bias window is so large that the number
of electrons can alternate between N −1, N and N +1, i.e. two electrons can tunnel
onto the dot at the same time

electrons on the dot remains fixed and no current flows through the dot. This
is known as Coulomb blockade.

Fortunately, there are many ways to lift the Coulomb blockade. First,
we can change the voltage applied to the gate electrode. This changes the
electrostatic potential of the dot with respect to that of the reservoirs, shifting
the whole “ladder” of electrochemical potential levels up or down. When a level
falls within the bias window, the current through the device is switched on. In
Fig. 7b µ(N) is aligned, so the electron number alternates between N −1 and
N . This means that the Nth electron can tunnel onto the dot from the source,
but only after it tunnels off to the drain can another electron come onto the
dot again from the source. This cycle is known as single-electron tunnelling.

By sweeping the gate voltage and measuring the current, we obtain a trace
as shown in Fig. 8a. At the positions of the peaks, an electrochemical potential
level is aligned with the source and drain and a single-electron tunnelling
current flows. In the valleys between the peaks, the number of electrons on
the dot is fixed due to Coulomb blockade. By tuning the gate voltage from
one valley to the next one, the number of electrons on the dot can be precisely
controlled. The distance between the peaks corresponds to EC +∆E, and can
therefore give information about the energy spectrum of the dot.

A second way to lift Coulomb blockade is by changing the source-drain
voltage, VSD (see Fig. 7c). (In general, we keep the drain potential fixed, and
change only the source potential.) This increases the bias window and also
“drags” the electrochemical potential of the dot along, due to the capacitive
coupling to the source. Again, a current can flow only when an electrochemical
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Fig. 8. Transport through a quantum dot. (a) Coulomb peaks in current versus gate
voltage in the linear-response regime. (b) Coulomb diamonds in differential conduc-
tance, dI/dVSD, versus VSD and Vg, up to large bias. The edges of the diamond-
shaped regions (black) correspond to the onset of current. Diagonal lines emanating
from the diamonds (gray) indicate the onset of transport through excited states

potential level falls within the bias window. By increasing VSD until both the
ground state as well as an excited state transition fall within the bias window,
an electron can choose to tunnel not only through the ground state, but also
through an excited state of the N -electron dot. This is visible as a change in
the total current. In this way, we can perform excited-state spectroscopy.

Usually, we measure the current or differential conductance while sweeping
the bias voltage, for a series of different values of the gate voltage. Such a
measurement is shown schematically in Fig. 8b. Inside the diamond-shaped
region, the number of electrons is fixed due to Coulomb blockade, and no
current flows. Outside the diamonds, Coulomb blockade is lifted and single-
electron tunnelling can take place (or for larger bias voltages even double-
electron tunnelling is possible, see Fig. 7d). Excited states are revealed as
changes in the current, i.e. as peaks or dips in the differential conductance.
From such a “Coulomb diamond” the excited-state splitting as well as the
charging energy can be read off directly.

The simple model described above explains successfully how quantisation
of charge and energy leads to effects like Coulomb blockade and Coulomb
oscillations. Nevertheless, it is too simplified in many respects. For instance,
the model considers only first-order tunnelling processes, in which an electron
tunnels first from one reservoir onto the dot, and then from the dot to the
other reservoir. But when the tunnel rate between the dot and the leads, Γ , is
increased, higher-order tunnelling via virtual intermediate states becomes im-
portant. Such processes are known as “cotunnelling”. Furthermore, the simple
model does not take into account the spin of the electrons, thereby excluding
for instance exchange effects. Also the Kondo effect, an interaction between
the spin on the dot and the spins of the electrons in the reservoir, cannot be
accounted for.
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1.6 Spin Configurations in Few-Electron Quantum Dots

The fact that electrons carry spin determines the electronic states of the quan-
tum dot. In the simplest case – a dot containing just a single electron – spin
leads to a splitting of all orbitals into Zeeman doublets, with the ground state
corresponding to the electron spin pointing up (↑), and the excited state to
the spin pointing down (↓). The difference between the corresponding energy
levels E↑ and E↓ is given by the Zeeman energy, ∆EZ = gµBB, which is
approximately 25 µeV/T in GaAs.

For two electrons in a quantum dot, the situation is more complicated. For
a Hamiltonian without explicit spin-dependent terms, the two-electron state
is the product of the orbital and spin state. Since electrons are fermions, the
total two-electron state has to be anti-symmetric under exchange of the two
particles. Therefore, if the orbital part is symmetric, the spin state must be
anti-symmetric, and if the spin part is anti-symmetric, the orbital state must
be symmetric. The anti-symmetric two-spin state is the so-called spin singlet
(S):

S =
| ↑↓〉 − | ↓↑〉√

2
(3)

which has total spin S = 0. The symmetric two-spin states are the so-called
spin triplets (T+, T0 and T−):

T+ = | ↑↑〉T0 =
| ↑↓〉 + | ↓↑〉√

2
T− = | ↓↓〉 (4)

which have total spin S = 1 and a quantum number ms (corresponding to the
spin z-component) of 1, 0, and −1, respectively. In a finite magnetic field, the
three triplet states are split by the Zeeman splitting, ∆EZ .

Even at zero magnetic field, the energy of the two-electron system depends
on its spin configuration, through the requirement of anti-symmetry of the
total state. If we consider just the two lowest orbitals, ε0 and ε1, then there
are six possibilities to fill these with two electrons (Fig. 9). At zero magnetic
field [28], the two-electron ground state is always the spin singlet (Fig. 9a),
and the lowest excited states are always the three spin triplets (Fig. 9b–d).
The energy gain of T0 with respect to the excited spin singlet S1 (Fig. 9e)
is known as the exchange energy, J . It essentially results from the fact that
electrons in the triplet states tend to avoid each other, reducing their mutual
Coulomb energy. As the Coulomb interaction is very strong, the exchange
energy can be quite large (a few 100 µeV) [29].

The energy difference between T0 and the lowest singlet S, the “singlet-
triplet energy” EST , is thus considerably smaller than ε1−ε0. In fact, besides
the gain in exchange energy for the triplet states, there is also a gain in the
direct Coulomb energy, related to the different occupation of the orbitals [29].
For a magnetic field above a few Tesla (perpendicular to the 2DEG plane),
EST can even become negative, leading to a singlet-triplet transition of the
two-electron ground state [30].



Semiconductor Few-Electron Quantum Dots as Spin Qubits 39

+

fe

a b c d

S T+ T
0

T-

S1 S2

ε0

ε1

Fig. 9. Schematic energy diagrams depicting the spin states of two electrons occu-
pying two spin degenerate single-particle levels (ε0 and ε1). (a) Spin singlet, which
is the ground state at zero magnetic field. (b)–(d) Lowest three spin triplet states,
T+, T0 and T−, which have total spin S = 1 and quantum number ms = +1, 0 and
−1, respectively. In finite magnetic field, the triplet states are split by the Zeeman
energy. (e) Excited spin singlet state, S1, which has an energy J compared to triplet
state T0. (f) Highest excited spin singlet state, S2

In the presence of a magnetic field, the energies of the lowest singlet and
triplet states (Fig. 9a–d) can be expressed as:

ES = E↑ + E↓ + EC = 2E↑ + ∆EZ + EC

ET+
= 2E↑ + EST +EC

ET0
= E↑+E↓+EST +EC = 2E↑+EST +∆EZ +EC

ET
−

= 2E↓+EST +EC = 2E↑+EST +2∆EZ +EC .

Figure 10a shows the possible transitions between the one-electron spin-split
orbital ground state and the two-electron states. We have omitted the transi-
tions ↑↔T− and ↓↔T+ since these require a change in the spin z-component
of more than 1/2 and are thus spin-blocked [31]. From the energy diagram we
can deduce the electrochemical potential ladder, which is shown in Fig. 10b.
Note that µ↑↔T+

= µ↓↔T0
and µ↑↔T0

= µ↓↔T
−

. Consequently, the three triplet
states lead to only two resonances in first order transport through the dot.

For more than two electrons, the spin states can be much more compli-
cated. However, in some cases and for certain magnetic field regimes they
might be well approximated by a one-electron Zeeman doublet (when N is
odd) or by two-electron singlet or triplet states (when N is even). But there
are still differences – for instance, if N > 2 the ground state at zero field can
be a spin triplet, due to Hund’s rule [32].

The eigenstates of a two-electron double dot are also spin singlets and
triplets. We can again use the diagrams in Fig. 9, but now the single-particle
eigenstates ε0 and ε1 represent the symmetric and anti-symmetric combi-
nation of the lowest orbital on each of the two dots, respectively. Due to
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Fig. 10. One- and two-electron states and transitions at finite magnetic field. (a) En-
ergy diagram for a fixed gate voltage. By changing the gate voltage, the one-electron
states (below the dashed line) shift up or down relative to the two-electron states
(above the dashed line). The six transitions that are allowed (i.e. not spin-blocked)
are indicated by vertical arrows. (b) Electrochemical potentials for the transitions
between one- and two-electron states. The six transitions in (a) correspond to only
four different electrochemical potentials. By changing the gate voltage, the whole
ladder of levels is shifted up or down

tunnelling between the dots, with tunnelling matrix element t, ε0 (the “bond-
ing state”) and ε1 (the “anti-bonding state”) are split by an energy 2t. By
filling the two states with two electrons, we again get a spin singlet ground
state and a triplet first excited state (at zero field). However, the singlet
ground state is not purely S (Fig. 9a), but also contains a small admixture of
the excited singlet S2 (Fig. 9f). The admixture of S2 depends on the compe-
tition between inter-dot tunnelling and the Coulomb repulsion, and serves to
lower the Coulomb energy by reducing the double occupancy of the dots [33].

If we focus only on the singlet ground state and the triplet first excited
states, then we can describe the two spins S1 and S2 by the Heisenberg
Hamiltonian, H = JS1 ·S2. Due to this mapping procedure, J is now defined
as the energy difference between the triplet state T0 and the singlet ground
state, which depends on the details of the double dot orbital states. From a
Hund-Mulliken calculation [34], J is approximately given by 4t2/U +V , where
U is the on-site charging energy and V includes the effect of the long-range
Coulomb interaction. By changing the overlap of the wavefunctions of the
two electrons, we can change t and therefore J . Thus, control of the inter-
dot tunnel barrier would allow us to perform operations such as swapping or
entangling two spins.
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1.7 Measurement Setup

Dilution Refrigerator

To resolve small energies such as the Zeeman splitting, the sample has to be
cooled down to temperatures well below a Kelvin. We use an Oxford Kelvi-
nox 300 dilution refrigerator, which has a base temperature of about 10 mK,
and a cooling power in excess of 300 µW (at 100 mK). The sample holder is
connected to a cold finger and placed in a copper can (36 mm inner diameter)
in the bore of a superconducting magnet that can apply a magnetic field up
to 16 T.

Measurement Electronics

A typical measurement involves applying a source-drain voltage over (a part
of) the device, and measuring the resulting current as a function of the volt-
ages applied to the gates. The electrical circuits for the voltage-biased current
measurement and for applying the gate voltages are shown in Fig. 11 and
Fig. 12, respectively. The most important parts of the measurement electron-
ics – i.e. the current-to-voltage (IV) convertor, isolation amplifier, voltage
source and digital-to-analog convertors (DACs) – were all built by Raymond
Schouten at Delft University. The underlying principle of the setup is to isolate
the sample electrically from the measurement electronics. This is achieved via
optical isolation at both sides of the measurement chain, i.e. in the voltage
source, the isolation amplifier, as well as the DACs. In all these units, the
electrical signal passes through analog optocouplers, which first convert it to
an optical signal using an LED, and then convert the optical signal back using
a photodiode. In this way, there is no galvanic connection between the two
sides. In addition, all circuitry at the sample side is analog (even the DACs
have no clock circuits or microprocessors), battery-powered, and uses a single
clean ground (connected to the metal parts of the fridge) which is separated
from the ground used by the “dirty” electronics. All these features help to
eliminate ground loops and reduce interference on the measurement signal.

Measurements are controlled by a computer running LabView. It sends
commands via a fiber link to two DAC-boxes, each containing 8 digital-to-
analog convertors, and powered by a specially shielded transformer. Most of
the DACs are used to generate the voltages applied to the gate electrodes
(typically between 0 and −5 V). One of the DACs controls the source-drain
voltage for the device. The output voltage of this DAC (typically between +5
and −5 V) is sent to a voltage source, which attenuates the signal by a factor
10, 102, 103 or 104 and provides optical isolation. The attenuated voltage is
then applied to one of the ohmic contacts connected to the source reservoir
of the device.
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The resulting current coming from the drain reservoir is fed to a low-noise
IV convertor. In this work we use two types, depending on the desired band-
width. The first one is designed for low-frequency measurements. It has a
bandwidth of about 1 kHz, and a noise floor of ∼5 fA/Hz1/2. The feedback
resistance can be set to 10 MΩ, 100 MΩ or 1 GΩ, with an input resistance
that is a factor 103 or 104 smaller (for the “low noise” or “low input re-
sistance” setting, respectively). The faster IV convertor has a bandwidth of
about 150 kHz, and a current noise of ∼1 pA/Hz1/2 at 100 kHz. The feedback
resistance is 10 MΩ, corresponding to an input resistance of 1.3 kΩ. More
characteristics are given in Sect. 4.

The signal from the IV convertor is then sent to an isolation amplifier,
to provide optical isolation and possibly gain. Again we can choose a low-
frequency version (up to ∼1 kHz) or a high-frequency one (up to ∼300 kHz).
The voltage from the isolation amplifier is finally measured by a digital multi-
meter (Keithley 2700) and sent to the computer via GPIB interface. Alterna-
tively, we can use a lock-in amplifier (Stanford EG&G 5210) if the signal to be
measured is periodic, or an ADwin Gold module for very fast measurements
(up to 2.2 × 106 14-bit samples per second).

Measurement Wires

To make contact to the sample, 2 × 12 twisted pairs of wires run from two
connector boxes at room temperature all the way down to the “cold finger”
at base temperature. The diameter and material of these wires is chosen to
minimize the heat load on the mixing chamber. From room temperature to 1
Kelvin, 2 × 9 pairs consist of manganine wires (100 µm diameter), and 2× 3
pairs of copper wires (90 µm diameter). The copper wires can be used if a large
current has to be applied. From 1 Kelvin to the mixing chamber, supercon-
ducting “Niomax” wires (50 µm diameter) are used. From the mixing chamber
to the bottom of the cold finger, where thermal conductivity is no longer a
constraint, we have standard copper wires. At base temperature, one wire of
each twisted pair is connected to “cold ground” (i.e. the cold finger), which is
electrically connected to clean ground via the metal parts of the fridge.

All wires are thermally anchored to the fridge, by carefully wrapping them
around copper posts, at several temperature stages (4 K, 1 K, ∼100 mK and
∼10 mK). At room temperature, the resistance of the wires is about 250 Ω or
150 Ω for the manganine or copper wires, respectively. At low temperature it
is about 50 Ω. The wires have various parasitic capacitances to their twisted
partner and to ground, as indicated in Fig. 11 and Fig. 12.

Filtering

The wires connect the device to the measurement electronics at room tem-
perature, so they have to be carefully filtered to avoid that the electrons in
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the sample heat up due to spurious noise and interference. Several filtering
stages are required for different frequency ranges (see Fig. 11 and Fig. 12). In
the connector box at room temperature, all wires are connected to ground via
0.22 nF “feedthrough capacitors”. At base temperature, all signal wires run
through “copper powder filters” [35]. These are copper tubes filled with cop-
per powder, in which 4 signal wires with a length of about 2 meters each are
wound. The powder absorbs the high-frequency noise very effectively, leading
to an attenuation of more than −60 dB from a few 100 MHz up to more than
50 GHz [36].

To remove the remaining low-frequency noise, we solder a 20 nF capacitor
between each signal wire and the cold finger ground. In combination with the
∼100 Ω resistance of the wires, this forms a low-pass RC filter with a cut-off
frequency of about 100 kHz (even 10 kHz for the wire connected to the IV
convertor, due to its input resistance of about 1.3 kΩ). These filters are used
for the wires connecting to ohmic contacts (although they were taken out to
perform some of the high-bandwidth measurements described in this work).
For the wires connecting to gate electrodes, a 1:3 voltage divider is present
(consisting of a 20 MΩ resistance in the signal line and a 10 MΩ resistance to
ground). In this way, the gate voltages are filtered by a low-pass RC filter with
a cut-off frequency of about 1 Hz. By combining all these filters, the electrons
in the sample can be cooled to an effective temperature below 50 mK (if no
extra heat loads such as coaxial cables are present).

High-Frequency Signals

High-frequency signals can be applied to gate electrodes via two coaxial cables.
They consist of three parts, connected via standard 2.4 mm Hewlett Packard
connectors (specified up to 50 GHz). From room temperature to 1 Kelvin,
a 0.085 inch semi-rigid Be-Cu (inner and outer conductor) coaxial cable is
used. From 1 Kelvin to the mixing chamber, we use 0.085 inch semi-rigid
superconducting Nb. From the mixing chamber to the sample holder, flexible
tin plated Cu coaxial cables are present. The coaxes are thermally anchored at
4 K, 1 K, ∼800 mK, ∼100 mK and base temperature, by clamping each cable
firmly between two copper parts. To thermalize also the inner conductor of
the coax, we use Hewlett Packard 8490D attenuators (typically −20 dB) at
1 K. These attenuators cannot be used at the mixing chamber, as they tend
to become superconducting below about 100 mK. We have also tried using
Inmet 50EH attenuators at the mixing chamber, but these showed the same
problem.

To generate the high-frequency signals, we use a microwave source (Hewlett
Packard 83650A) that goes up to 50 GHz (or 75 GHz, in combination with a
“frequency doubler”); a pulse generator (Hewlett Packard 8133A), which gen-
erates simple 10 ns to 1 µs pulses with a rise time of 60 ps; and an arbitrary
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waveform generator (Sony Tektronix AWS520), which can generate more com-
plicated pulses with a rise time of 1.5 ns. With the cables described above, the
fastest pulse flank we can transmit to the sample is about 200 ps. Microwave
signals are transmitted with about 10 dB loss at 50 GHz.

Special care needs to be given to the connection from the coaxial cable to
the chip, in order to minimize reflections. The sample holder we use, has an
SMA connector that can be connected to the 2.4 mm coaxial cable. At the
other end, the pin of the SMA connector sticks through a small hole in the
chip carrier. This allows it to be soldered to a metal pad on the chip carrier,
from which we can then bond to the chip. This sample holder is used to apply
pulses or microwave signals to a gate electrode.

1.8 Sample Stability

A severe experimental difficulty that is not related to the measurement setup,
but to the sample itself, is the problem of “charge switching”. It shows up in
measurements as fluctuations in the position of a Coulomb peak, or as sudden
jumps in the QPC-current that are not related to charging or discharging of a
nearby quantum dot. Generally, these switches are attributed to (deep) traps
in the donor layer that capture or release an electron close to the quantum
dot [37]. This well-known but poorly understood phenomenon is a manifesta-
tion of 1/f noise in semiconductors, which causes the electrostatic potential
landscape in the 2DEG to fluctuate.

The strength of the fluctuations can differ enormously. In some samples,
switching occurs on a time scale of seconds, making only the most trivial
measurements possible, whereas in other samples, no switches are visible on
a time scale of hours. It is not clear what exactly determines the stability. It
certainly depends on the heterostructure, as some wafers are clearly better
than others. A number of growth parameters could be important, such as the
Al concentration in the AlGaAs, the doping density and method (modulation
doping or delta doping), the thickness of the spacer layer between the n-
AlGaAs and GaAs, the depth of the 2DEG below the surface, a possible
surface layer, and many more. We have recently started a collaboration with
the group of Professor Wegscheider in Regensburg to grow and characterize
heterostructures in which some of these parameters are systematically varied.
In this way we hope to find out what makes certain heterostructures stable.

Even for the same heterostructure, some samples are more quiet than
others. The reasons for this are not clear. There are reports that stability is
improved if the sample is cooled down slowly, while applying a positive voltage
(about +280 mV) on all gates that are going to be used in the experiment.
This procedure effectively “freezes in” a negative charge around the gates,
such that less negative gate voltages are sufficient to define the quantum dot
at low temperatures. Most samples described in this work have been cooled
down from room temperature to 4 K slowly (in one to two days) with all gates
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grounded. We find that in general samples get more quiet during the first
week of applying the gate voltages. Finally, sample stability also involves an
element of luck: Fig. 13 shows two Coulomb diamonds that were measured im-
mediately after each other under identical conditions. Measurement Fig. 13a
is reasonably quiet, but in Fig. 13b the effects of an individual two-level fluc-
tuator are visible. This particular fluctuator remained active for a week, until
the sample was warmed up.
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Fig. 13. Charge switching in a large-bias measurement in the few-electron regime,
for B = 12 T. (a) Differential conductance, dI/dVSD (in grayscale), as a function
of bias voltage and gate voltage. This measurement is considered reasonably stable.
(b) Identical measurement, taken immediately after (a). A single two-level fluctuator
has become active, causing the effective gate voltage to fluctuate between two values
at any position in the figure, and leading to an apparent splitting of all the lines.
This is considered a measurement of poor stability

Switching has made all experiments we performed more difficult, and has
made some experiments that we wanted to perform impossible. Better control
over heterostructure stability is therefore essential for the increasingly difficult
steps towards creating a quantum dot spin qubit.

2 Few-Electron Quantum Dot Circuit

with Integrated Charge Read-Out

In this section, we report on the realization of few-electron double quantum
dots defined in a two-dimensional electron gas by means of surface gates on
top of a GaAs/AlGaAs heterostructure. The double quantum dots are flanked
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by two quantum point contacts, serving as charge detectors. These enable de-
termination of the precise number of conduction electrons on each dot. This
number can be reduced to zero while still allowing transport measurements
through the double dot. Even in the few-electron case, the tunnel coupling
between the two dots can be controlled over a wide range, from the weak-
coupling to the strong-coupling regime. In addition, we use microwave radia-
tion to pump an electron from one dot to the other by absorption of a single
photon. The experiments demonstrate that this quantum dot circuit can serve
as a good starting point for a scalable spin-qubit system.

2.1 Few-Electron Quantum Dots

The experimental development of a quantum computer is presently at the
stage of realizing few-qubit circuits. In the solid state, particular success
has been achieved with superconducting devices, in which two macroscopic
quantum states are used as a qubit two-level system (see [38] and references
therein). The opposite alternative would be the use of two-level systems de-
fined by microscopic variables, for instance the spin (or charge) state of single
electrons confined in semiconductor quantum dots [27]. For the control of
one-electron quantum states by electrical voltages, the first requirement is to
realize an appropriate quantum dot circuit containing just a single conduction
electron.

Single-electron quantum dots have been created in self-assembled struc-
tures [39] and also in small vertical pillars defined by etching [40]. (Recently,
also semiconductor nanowires and carbon nanotubes have been used for this
purpose.) The disadvantage of these types of quantum dots is that they are
hard to integrate into circuits with a controllable coupling between the ele-
ments, although integration of vertical quantum dot structures is currently
being pursued [41, 42]. Alternatively, we can use a system of lateral quan-
tum dots defined in a two-dimensional electron gas (2DEG) by surface gates
on top of a semiconductor heterostructure [27]. Here, integration of multiple
dots is straightforward, by simply increasing the number of gate electrodes.
In addition, the tunnel coupling between the dots can be tuned in situ, since
it is controlled by the gate voltages. The challenge is to reduce the number
of electrons to one per quantum dot. This has long been impossible, since
reducing the electron number tends to be accompanied by a decrease in the
tunnel coupling, resulting in a current too small to be measured [43].

In this section, we demonstrate double quantum dot devices containing a
voltage-controllable number of electrons, down to a single electron. We have
integrated these devices with charge detectors that can read out the charge
state of the double quantum dot with a sensitivity better than a single electron
charge. The importance of the present circuit is that it can serve as a fully
tunable two-qubit system, following the proposal by Loss and DiVincenzo [2],
which describes an optimal combination of the single-electron charge degree
of freedom (for convenient manipulation using electrical voltages) and the
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spin degree of freedom (which promises a long coherence time, essential for
encoding quantum information).

2.2 Samples

We have fabricated and measured several few-electron double quantum dots,
of three different designs (Fig. 14). The first two types have only been used
once as few-electron single dots. In both cases, one of the gate electrodes was
not functioning, which prevented us from testing if these devices also function
as few-electron double dots. The third type of device (Fig. 14c) did function
as a double dot, and was used for all subsequent few-electron experiments.

To verify that the first device (Fig. 14a) can operate as a few-electron
single quantum dot, we performed a large-bias measurement of the differential
conductance through the dot. Going towards more negative gate voltage, a
series of “Coulomb diamonds” is revealed (Fig. 15a), in which the number of
electrons on the dot, N , is constant. This is followed by a region in which
the “diamond” does not close, even up to a source-drain voltage of 10 mV, i.e.
several times larger than the typical charging energy for a small dot (∼2 meV).
Therefore, in this region N = 0.

The tunnel coupling between the dot and the source and drain reservoirs
could be changed by simply readjusting the gate voltages. For strong coupling,
a zero-bias peak – hallmark of the Kondo effect – became visible throughout
the one-electron diamond (Fig. 15b). From the width of the zero-bias peak
(Fig. 15c) we found a Kondo temperature of about 0.4 K. The appearance
of a one-electron Kondo effect (unpublished) implies that this quantum dot
design allows the tunnel coupling to be tuned over a wide range, even in the
few-electron regime. In addition, it is striking evidence that we can confine a
single spin in a lateral quantum dot.

In the second quantum dot design (Fig. 14b), the narrow “plunger” gates
approach the dot more from the sides, rather than from below. In this way,
they are further away from the central tunnel barrier, reducing the effect they
have on the tunnel rate. Also, the gate coming from the top of the picture
was made thinner, in order to make the tunnel barriers more easily control-
lable [43]. Thirdly, the characteristic gates ending in circles (see Fig. 14a) were
left out. This device was quite easily tunable.

In the rest of this section, we use the third design (Fig. 14c). Two nomi-
nally identical devices are studied, both as shown in Fig. 16a. They consist of a
double quantum dot flanked by two quantum point contacts (QPCs), defined
in a 2DEG that is present below the surface of a GaAs/AlGaAs heterostruc-
ture. The layout of the double quantum dot is an extension of previously
reported single dot devices [43]. The double dot is defined by applying neg-
ative voltages to the 6 central gates. Gate T in combination with the left
(right) gate, L (R), controls the tunnel barrier from the left (right) dot to
drain 1 (source 2). Gate T in combination with the middle gate, M , controls
the tunnel barrier between the two dots. The narrow “plunger” gates, PL and
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Fig. 14. Few-electron quantum dot devices. (a) Scanning electron microscope im-
age of the first sample, showing the metal gate electrodes (light) on top of a
GaAs/AlGaAs heterostructure (dark) that contains a 2DEG 90nm below the surface
(with electron density 2.9× 1011 cm−2). This device was used only as a few-electron
single dot. Due to the similarity of the image to characters from the Japanese “Gun-
dam” animation, this has become known as the Gundam design. The two gates
coming from the top and ending in small circles (the “eyes”) were meant to make
the dot confinement potential steeper, by applying a positive voltage to them (up
to ∼0.5 V). The gates were not very effective, and were left out in later designs.
(The device was fabricated by Wilfred van der Wiel at NTT Basic Research Lab-
oratories.) (b) Scanning electron microscope image of the second device, made on
a similar heterostructure. It was used only as a few-electron single dot, and was
more easily tunable than the first one. (The device was fabricated by Wilfred van
der Wiel and Ronald Hanson at NTT Basic Research Laboratories.) (c) Atomic
force microscope image of the third device, made on a similar heterostructure. This
design, with two extra side gates to form two quantum point contacts, was operated
many times as a single dot, and twice as a few-electron double dot. It was used for
all subsequent measurements. A zoom-in of the gate structure is shown in Fig. 16a.
(The device was fabricated by Ronald Hanson and Laurens Willems van Beveren at
NTT Basic Research Laboratories)
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Fig. 15. Kondo effect in a one-electron lateral quantum dot of the type shown
in Fig. 14a. (a) Differential conductance (in grayscale) versus source-drain voltage,
VSD, and plunger gate voltage, Vg. In the white diamond and the white region to
the right (indicated by N = 1 and N = 0, respectively), no current flows due to
Coulomb blockade. The N = 0 region opens up to more than 10 mV, indicating
that the dot is really empty here. (b) Close-up of the N = 1 diamond for stronger
coupling to the reservoirs. A sharp Kondo resonance is visible at zero source-drain
voltage. Although charge switching is very severe in this sample, the position of the
Kondo resonance is very stable, as it is pinned to the Fermi energy of the reservoirs.
(c) Kondo zero-bias peak in differential conductance, taken at the position indicated
by the dotted line in (b)

PR, are used to change the electrostatic potential of the left and right dot,
respectively. The left plunger gate is connected to a coaxial cable, so that
we can apply high-frequency signals. In the present experiments we do not
apply dc voltages to PL. In order to control the number of electrons on the
double dot, we use gate L for the left dot and PR or R for the right dot. All
measurements are performed with the sample cooled to a base temperature
of about 10 mK inside a dilution refrigerator.

We first study sample 1. The individual dots are characterized using stan-
dard Coulomb blockade experiments [27], i.e. by measuring IDOT . We find
that the energy cost for adding a second electron to a one-electron dot is
3.7 meV. The one-electron excitation energy (i.e. the difference between the
ground state and the first orbital excited state) is 1.8 meV at zero magnetic
field. For a two-electron dot the energy difference between the spin singlet
ground state and the spin triplet excited state is 1.0 meV at zero magnetic
field. Increasing the field (perpendicular to the 2DEG) leads to a transition
from a singlet to a triplet ground state at about 1.7 Tesla.
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2.3 Quantum Point Contact as Charge Detector

As an alternative to measuring the current through the quantum dot, we
can also measure the charge on the dot using one of the QPCs [44, 45]. To
demonstrate this functionality, we first define only the left dot (by grounding
gates R and PR), and use the left QPC as a charge detector. The QPC is
formed by applying negative voltages to Q − L and L. This creates a narrow
constriction in the 2DEG, with a conductance, G, that is quantized when
sweeping the gate voltage VQ−L. The last plateau (at G = 2e2/h) and the
transition to complete pinch-off (i.e. G = 0) are shown in Fig. 16b. We tune
the QPC to the steepest point (G ≈ e2/h), where the QPC-conductance has
a maximum sensitivity to changes in the electrostatic environment, including
changes in the charge of the nearby quantum dot.

To change the number of electrons in the left dot, we make gate volt-
age VM more negative (see Fig. 16c). This reduces the QPC current, due to
the capacitive coupling from gate M to the QPC constriction. In addition, the
changing gate voltage periodically pushes an electron out of the dot. The as-
sociated sudden change in charge lifts the electrostatic potential at the QPC
constriction, resulting in a step-like feature in IQPC (see the expansion in
Fig. 16c, where the linear background is subtracted). This step indicates a
change in the electron number. So, even without passing current through the
dot, IQPC provides information about the charge on the dot.

To enhance the charge sensitivity we apply a small modulation (0.3 mV
at 17.7 Hz) to VM and use lock-in detection to measure dIQPC/dVM [45].
The steps in IQPC now appear as dips in dIQPC/dVM . Figure 16d shows
the resulting dips, as well as the corresponding Coulomb peaks measured in
the current through the dot. The coincidence of the Coulomb peaks and dips
demonstrates that the QPC indeed functions as a charge detector. From the
height of the step in Fig. 16c (∼50 pA, typically 1–2% of the total current)
compared to the noise (∼5 pA for a measurement time of 100 ms), we estimate
the sensitivity of the charge detector to be about 0.1e, with e being the single
electron charge. The unique advantage of QPC charge detection is that it
provides a signal even when the tunnel barriers of the dot are so opaque that
IDOT is too small to be measured [44, 45]. This allows us to study quantum
dots even when they are virtually isolated from the reservoirs.

2.4 Double Dot Charge Stability Diagram

The QPC can also detect changes in the charge configuration of the double dot.
To demonstrate this, we use the QPC on the right to measure dIQPC/dVL

versus VL and VPR (Fig. 17a), where VL controls (mainly) the number of
electrons on the left dot, and VPR (mainly) that on the right. Dark lines in
the figure signify a dip in dIQPC/dVL, corresponding to a change in the total
number of electrons on the double dot. Together these lines form the so-called
“honeycomb diagram” [46, 47]. The almost-horizontal lines correspond to a
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Fig. 16. Operating the QPC as a charge detector of a single dot. (a) Scanning
electron microscope image of the device, showing metallic surface gates (light gray)
on top of a GaAs/AlGaAs heterostructure (dark gray). The device contains a 2DEG
90nm below the surface, with an electron density of 2.9 × 1011 cm−2. White dotted

circles indicate the two quantum dots, white arrows show the possible current paths.
A bias voltage, VDOT , can be applied between source 2 and drain 1, leading to
current through the dot(s), IDOT . A bias voltage, VSD1 (VSD2), between source 1
(source 2) and drain 1 (drain 2), yields a current, IQPC through the left (right)
QPC. (b) Conductance, G, of the left QPC versus gate voltage, VQ−L, showing
the last quantized plateau (at G = 2e2/h) and the transition to complete pinch-off
(G = 0). The QPC is set to the point of highest charge sensitivity, at G ≈ e2/h
(indicated by the dashed cross). (c) Current through the left QPC, IQPC , versus
left-dot gate voltage, VM , with VSD1 = 250 µV and VSD2 = VDOT = 0. Steps
indicated by arrows correspond to changes in the number of electrons on the left dot.
Encircled inset: the last step (∼50 pA high), with the linear background subtracted.
(d) Upper panel: Coulomb peaks measured in transport current through the left dot,
with VDOT = 100 µV and VSD1 = VSD2 = 0. Lower panel: changes in the number
of electrons on the left dot measured with the left QPC, with VSD1 = 250 µV and
VSD2 = VDOT = 0)
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Fig. 17. Using the QPC to measure the charge configuration of a double quan-
tum dot in the few-electron regime. (a) dIQPC/dVL (in grayscale) versus VL and
VPR, with VSD2 = 100 µV and VSD1 = VDOT = 0. A small modulation (0.3 mV
at 17.77 Hz) is applied to VL, and the resulting modulation in IQPC is measured
with a lock-in amplifier to give dIQPC/dVL directly. The label “00” indicates the
region where the double dot is completely empty. In the bottom left corner the dark

lines are poorly visible. Here the tunnel rates to the reservoirs are quite large, lead-
ing to smearing of the steps in the QPC current, and therefore to smaller dips in
dIQPC/dVL. (b) Zoom-in of Fig. 17a, showing the “honeycomb” diagram for the first
few electrons in the double dot. The black labels indicate the charge configuration,
with “21” meaning 2 electrons in the left dot and 1 on the right

change in the number of electrons on the left dot, whereas almost-vertical lines
indicate a change in the electron number on the right. In the upper left region
the “horizontal” lines are not present, even though the QPC can still detect
changes in the charge, as demonstrated by the presence of the “vertical” lines.
We conclude that in this region the left dot contains zero electrons. Similarly, a
disappearance of the “vertical” lines occurs in the lower right region, showing
that here the right dot is empty. In the upper right region, the absence of
lines shows that here the double dot is completely empty.

We are now able to identify the exact charge configuration of the double
dot in every honeycomb cell, by simply counting the number of “horizontal”
and “vertical” lines that separate it from the 00 region. In Fig. 17b the first
few honeycomb cells are labelled according to their charge configuration, with
e.g. the label “21” meaning 2 electrons in the left dot and 1 on the right.
Besides the dark lines, also short bright lines are visible, signifying a peak
in dIQPC/dVL. These bright lines correspond to an electron being transferred
from one dot to the other, with the total electron number remaining the same.
(The fact that some charge transitions result in a dip in dIQPC/dVL and others
in a peak, derives from the fact that we use the QPC on the right and apply
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the modulation to the gate on the left. When an electron is pushed out of the
double dot by making VL more negative, the QPC opens up and dIQPC/dVL

displays a dip. When VL pushes an electron from the left to the right dot,
the QPC is closed slightly, resulting in a peak.) The visibility of all lines in
the honeycomb pattern demonstrates that the QPC is sufficiently sensitive to
detect even inter-dot transitions.

2.5 Tunable Tunnel Barriers in the Few-Electron Regime

In measurements of transport through lateral double quantum dots, the few-
electron regime has never been reached [47]. The problem is that the gates
that are used to deplete the dots also strongly influence the tunnel barriers.
Reducing the electron number would therefore always lead to the Coulomb
peaks becoming unmeasurably small, but not necessarily due to an empty dou-
ble dot. The QPC detectors now permit us to compare charge and transport
measurements.

Figure 18a shows the current through the double dot in the same region as
shown in Fig. 17b. In the bottom left region the gates are not very negative,
hence the tunnel barriers are quite open. Here the resonant current at the
charge transition points is quite high (∼100 pA, dark gray), and lines due
to cotunnelling are also visible [47]. Towards the top right corner the gate
voltages become more negative, thereby closing off the barriers and reducing
the current peaks (lighter gray). The last “triple points” [47] that are visible
(<1 pA) are shown in the dashed square. Using the dotted lines, extracted
from the measured charge transition lines in Fig. 17b, we label the various
regions in the figure according to the charge configuration of the double dot.
Apart from a small shift, the dotted lines correspond nicely to the regions
where a transport current is visible. This allows us to be confident that the
triple points in the dashed square are really the last ones before the double
quantum dot is empty. We are thus able to measure transport through a
one-electron double quantum dot.

Even in the few-electron regime, the double dot remains fully tunable.
By changing the voltage applied to gate T , we can make the tunnel barriers
more transparent, leading to a larger current through the device. We use this
procedure to increase the current at the last set of triple points. For the gate
voltages used in Fig. 18b, the resonant current is very small (<1 pA), and the
triple points are only faintly visible. By making VT less negative, the resonant
current peaks grow to about 5 pA (Fig. 18c). The two triple points are clearly
resolved and the cotunnelling current is not visible. By changing VT even more,
the current at the last triple points can be increased to ∼70 pA (Fig. 18d). For
these settings, the triple points have turned into lines, due to the increased
cotunnelling current. This sequence demonstrates that we can tune the few-
electron double dot from being nearly isolated from the reservoirs, to being
very transparent.
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Fig. 18. Current through the double quantum dot in the few-electron regime.
(a) IDOT (in logarithmic grayscale) versus VL and VPR in the same region as shown
in Fig. 17b, with VDOT = 100 µV and VSD1 = VSD2 = 0. Dotted lines are extracted
from Fig. 17b. Dark gray indicates a current flowing, with the darkest regions (in
the bottom left corner) corresponding to ∼100 pA. In the light gray regions current
is zero due to Coulomb blockade. Inside the dashed square, the last triple points
are faintly visible (∼1 pA). (A smoothly varying background current due to a small
leakage current from a gate to the 2DEG has been subtracted from all traces.)
(b) Close-up of the region inside the dashed square in (a), showing the last two
triple points before the double dot is completely empty. The current at these triple
points is very small (<1 pA) since the tunnel barriers are very opaque. (c) Same
two triple points for different values of the voltage applied to the gates defining the
tunnel barriers. For these settings, the two individual triple points are well resolved,
with a height of about 5 pA. The cotunnelling current is not visible. (d) Same two
triple points, but now with the gate voltages such that the tunnel barriers are very
transparent. The current at the triple points is about 70 pA, and the cotunnelling
current is clearly visible

We can also control the inter-dot coupling, by changing the voltage applied
to gate M . This is demonstrated with a QPC charge measurement (performed
on sample 2). We apply a square wave modulation of 3 mV at 235 Hz to the
rightmost plunger gate, PR, and measure dIQPC/dVPR using a lock-in am-
plifier. Figure 19a shows the familiar honeycomb diagram in the few-electron
regime. All lines indicating charge transitions are very straight, implying that
for the gate settings used, the tunnnel-coupling between the two dots is negli-
gible compared to the capacitive coupling. This is the so-called weak-coupling
regime. (We note that the regular shape of the honeycomb pattern demon-
strates that the double dot as a whole is still quite well-coupled to the leads,
so that the total number of electrons can always find its lowest-energy value,
unlike in [48].) By making VM less negative, the tunnel barrier between the
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Fig. 19. Controlling the inter-dot coupling (in sample 2) with VM . These charge
stability diagrams of the double quantum dot are measured using the QPC on the
left. A small modulation (3 mV at 235 Hz) is applied to gate PR, and dIQPC/dVPR

is measured with a lock-in amplifier and plotted in grayscale versus VL and VR. A
magnetic field of 6 Tesla is applied in the plane of the 2DEG. (a) Weak-coupling
regime. VM is such that all dark lines indicating charge transitions are straight.
The tunnel-coupling between the two dots is therefore negligible compared to the
capacitive coupling. (b) Intermediate-coupling regime. VM is 0.07 V less negative
than in (a), such that lines in the bottom left corner are slightly curved. This signifies
that here the inter-dot tunnel-coupling is comparable to the capacitive coupling.
(c) Strong-coupling regime. VM is 0.1 V less negative than in (b), such that all
lines are very curved. This implies that the tunnel-coupling is dominating over the
capacitive coupling and the double dot behaves as a single dot
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two dots is made more transparent, and the intermediate-coupling regime is
reached (Fig. 19b). Most lines are still straight, except in the bottom left
corner, where they are slightly curved. This signifies that here the inter-dot
tunnel-coupling is comparable to the capacitive coupling. If we make VM even
less negative, we reach the strong-coupling regime (Fig. 19c). In this case, all
lines are very curved, implying that the tunnel-coupling is dominating over
the capacitive coupling. In this regime the double dot behaves like a single
dot.

2.6 Photon-Assisted Tunnelling

The use of gated quantum dots for quantum state manipulation in time re-
quires the ability to modify the potential at high frequencies. We investi-
gate the high-frequency behavior in the region around the last triple points
(Fig. 20a), with a 50 GHz microwave-signal applied to gate PL. At the dotted
line the 01 and 10 charge states are degenerate in energy, so one electron can
tunnel back and forth between the two dots. Away from this line there is an
energy difference and only one charge state is stable. However, if the energy
difference matches the photon energy, the transition to the other dot is possi-
ble by absorption of a single photon. Such photon-assisted tunnelling events
give rise to the two lines indicated by the arrows. At the lower (higher) line
electrons are pumped from the the left (right) dot to the other one, giving rise
to a negative (positive) photon-assisted current. We find that the distance (in
terms of gate voltage) between the two photon-assisted tunnelling lines, ∆VL,
scales linearly with frequency (Fig. 20b), as expected in the weak-coupling
regime [47]. From the absence of bending of the line in Fig. 20b down to a
frequency of 6 GHz, it follows that the inter-dot tunnel coupling is smaller
than about 12 µeV.

The realization of a controllable few-electron quantum dot circuit repre-
sents a significant step towards controlling the coherent properties of single
electron spins in quantum dots [2, 49]. Integration with the QPCs permits
charge read-out of closed quantum dots. We note that charge read-out only
affects the spin state indirectly, via the spin-orbit interaction. The back-action
on the spin should therefore be small (until spin-to-charge conversion is initi-
ated), and can be further suppressed by switching on the charge detector only
during the read-out stage. Experiments described in the following sections fo-
cus on increasing the speed of the charge measurement, such that single-shot
read-out of a single electron spin can be accomplished [49, 50].

3 Excited-State Spectroscopy on a Nearly Closed

Quantum Dot via Charge Detection

In this section, we demonstrate a method for measuring the discrete energy
spectrum of a quantum dot connected very weakly to a single lead. A train of
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Fig. 20. Photon-assisted tunnelling in a one-electron double quantum dot. (a) Cur-
rent through the double dot at the last set of triple points, with zero bias voltage
(VDOT = VSD1 = VSD2 = 0). A microwave signal of 50 GHz is applied to PL. The
microwaves pump a current, IDOT , by absorption of single photons [47]. This photon-
assisted current shows up as two lines, indicated by the two arrows. The white line
(bottom) corresponds to electrons being pumped from the left to the right reservoir,
the dark line (top) corresponds to pumping in the reverse direction. In the middle,
around the dotted line separating the 01 from the 10 configuration, a finite current
is induced by an unwanted voltage drop over the double dot, due to asymmetric
coupling of the ac-signal to the two leads. (b) Separation between the two photon-
assisted tunnelling lines versus microwave frequency. The dependence is linear down
to the lowest frequency of about 6 GHz, from which it follows that the inter-dot tun-
nel coupling (half the energy difference between bonding and anti-bonding state) is
smaller than ∼12 µeV

voltage pulses applied to a metal gate induces tunnelling of electrons between
the quantum dot and a reservoir. The effective tunnel rate depends on the
number and nature of the energy levels in the dot made accessible by the
pulse. Measurement of the charge dynamics thus reveals the energy spectrum
of the dot, as demonstrated for a dot in the few-electron regime.

3.1 Introduction

Few-electron quantum dots are considered as qubits for quantum circuits,
where the quantum bit is stored in the spin or orbital state of an electron in a
single or double dot. The elements in such a device must have functionalities
such as initialization, one- and two-qubit operations and read-out [2]. For all
these functions it is necessary to have precise knowledge of the qubit energy
levels. Standard spectroscopy experiments involve electron transport through
the quantum dot while varying both a gate voltage and the source-drain
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voltage [27]. This requires that the quantum dot be connected to two leads
with a tunnel coupling large enough to obtain a measurable current [43].

Coupling to the leads unavoidably introduces decoherence of the qubit:
even if the number of electrons on the dot is fixed due to Coulomb blockade,
an electron can tunnel out of the dot and be replaced by another electron
through a second-order tunnelling process, causing the quantum information
to be irretrievably lost. Therefore, to optimally store qubits in quantum dots,
higher-order tunnelling has to be suppressed, i.e. the coupling to the leads
must be made as small as possible. Furthermore, real-time observation of
electron tunnelling, important for single-shot read-out of spin qubits via spin-
to-charge conversion, also requires a small coupling of the dot to the leads. In
this regime, current through the dot would be very hard or even impossible
to measure. Therefore an alternative spectroscopic technique is needed, which
does not rely on electron transport through the quantum dot.

Here we present spectroscopy measurements using charge detection. Our
method resembles experiments on superconducting Cooper-pair boxes and
semiconductor disks which have only one tunnel junction so that no net cur-
rent can flow. Information on the energy spectrum can then be obtained by
measuring the energy for adding an electron or Cooper-pair to the box, using
a single-electron transistor (SET) operated as a charge detector [51, 52, 53].
We are interested in the excitation spectrum for a given number of electrons
on the box, rather than the addition spectra. We use a quantum point con-
tact (QPC) as an electrometer [44] and excitation pulses with repetition rates
comparable to the tunnel rates to the lead, to measure the discrete energy
spectrum of a nearly isolated one- and two-electron quantum dot.

3.2 Tuning the Tunnel Barriers

The quantum dot and QPC are defined in the two-dimensional electron gas
(2DEG) in a GaAs/Al0.27Ga0.73As heterostructure by dc voltages on gates
T,M,R and Q (Fig. 21a). The dot’s plunger gate, P , is connected to a coaxial
cable, to which we can apply voltage pulses (rise time 1.5 ns). The QPC charge
detector is operated at a conductance of about e2/h with source-drain voltage
VSD = 0.2 mV. All data are taken with a magnetic field B// = 10 T applied in
the plane of the 2DEG, at an effective electron temperature of about 300 mK.

We first describe the procedure for setting the gate voltages such that
tunnelling in and out of the dot take place through one barrier only (i.e. the
other is completely closed), and the remaining tunnel rate be well controlled.
For gate voltages far away from a charge transition in the quantum dot, a
pulse applied to gate P (Fig. 21b) modulates the QPC current via the cross-
capacitance only (solid trace in Fig. 21c). Near a charge transition, the dot
can become occupied with an extra electron during the high stage of the pulse
(Fig. 21d). The extra electron on the dot reduces the current through the QPC.
The QPC response to the pulse is thus smaller when tunnelling takes place
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Fig. 21. QPC response to a pulse train applied to the plunger gate. (a) Scanning
electron micrograph of a quantum dot and quantum point contact, showing only
the gates used in the present experiment (the complete device is described in [55])
and Sect. 2. (b) Pulse train applied to gate P . (c) Schematic response in QPC
current, ∆IQPC , when the charge on the dot is unchanged by the pulse (solid line)
or increased by one electron charge during the “high” stage of the pulse (dashed).
(d) Schematic electrochemical potential diagrams during the high (left) and low
(right) pulse stage, when the ground state is pulsed across the Fermi level in the
reservoir, EF

(dotted trace in Fig. 21c). We denote the amplitude of the difference between
solid and dotted traces as the “electron response”.

Now, even when tunnelling is allowed energetically, the electron response
is only non-zero when an electron has sufficient time to actually tunnel into
the dot during the pulse time, τ . By measuring the electron response as a
function of τ , we can extract the tunnel rate, Γ , as demonstrated in Fig. 22a.
We apply a pulse train to gate P with equal up and down times, so the
repetition rate is f = 1/(2τ) (Fig. 21b). The QPC response is measured using
lock-in detection at frequency f [45], and is plotted versus the dc voltage on
gate M . For long pulses (lowest curves) the traces show a dip, which is due to
the electron response when crossing the zero-to-one electron transition. Here,
f ≪ Γ and tunnelling occurs quickly on the scale of the pulse duration. For
shorter pulses the dip gradually disappears. We find analytically1 that the dip
height is proportional to 1 − π2/(Γ 2τ2 + π2), so the dip height should equal
half its maximum value when Γτ = π. From the data (inset to Fig. 22a), we
find that this happens for τ ≈ 120 µs, giving Γ ≈ (40 µs)−1. Using this value

1 This expression is obtained by multiplying the probability that the dot is empty,
P (t), with a sine-wave of frequency f (as is done in the lock-in amplifier), and
averaging the resulting signal over one period. P (t) is given by exp(−Γt)(1 −
exp(−Γτ))/(1−exp(−2Γτ)) during the high stage of the pulse, and by 1−P (t−τ)
during the low stage.
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Fig. 22. Lock-in detection of electron tunnelling. (a) Lock-in signal at f = 1/(2τ)
versus VM for different pulse times, τ , with VP = 1 mV. The dip due to the electron
response disappears for shorter pulses. (Individual traces have been lined up hori-
zontally to compensate for a fluctuating offset charge, and have been given a vertical
offset for clarity.) (Inset) Height of the dip versus τ , as a percentage of the maximum
height (obtained at long τ). Circles: experimental data. Dashed lines indicate the
pulse time (τ ≈ 120 µs) for which the dip size is half its maximum value. Solid line:
calculated dip height using Γ = (40 µs)−1. (b) Lock-in signal in grayscale versus
VM and VR for VP = 1mV and f = 4.17 kHz. Dark lines correspond to dips as in
(a), indicating that the electron number changes by one. White labels indicate the
absolute number of electrons on the dot. (c) Same plot as in (b), but with larger
pulse repetition frequency (f = 41.7 kHz). (d) Same plot as in (b), but with smaller
pulse repetition frequency (f = 41.7 Hz)

for Γ in the analytical expression given above, we obtain the solid line in the
inset to Fig. 22a, which nicely matches the measured data points.

We explore several charge transitions in Fig. 22b, which shows the lock-in
signal in grayscale for τ = 120 µs, i.e. f = 4.17 kHz. The slanted dark lines
correspond to dips as in Fig. 22a. From the absence of further charge tran-
sitions past the topmost dark line, we obtain the absolute electron number
starting from zero. In the top left region of Fig. 22b, the right tunnel barrier
(between gates R and T ) is much more opaque than the left tunnel barrier
(between M and T ). Here, charge exchange occurs only with the left reservoir
(indicated as “reservoir” in Fig. 21a). Conversely, in the lower right region
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charge is exchanged only with the drain reservoir. In the middle region, indi-
cated for the two-to-three electron transition by an ellipse, both barriers are
too opaque and no charge can flow into or out of the dot during the 120 µs
pulse; consequently the electron response becomes zero and thus the dark line
disappears. For shorter pulses, i.e. larger pulse repetition frequency, the region
where the dark line disappears becomes wider (ellipse in Fig. 22c). For longer
pulses the dark line reappears (Fig. 22d). By varying the voltages on gates M
and R, we can thus precisely set the tunnel rate to the left or right reservoir
for each charge transition.

3.3 Excited-State Spectroscopy for N = 1

For spectroscopy measurements on a one-electron dot, we set the gate voltages
near the zero-to-one electron transition at the point indicated as △ in Fig. 22b.
At this point, the dot is operated as a charge box, with all tunnel events
occurring through just a single barrier. The pulse repetition rate is set to
385 Hz, so that the dip height is half its maximum value. The electron response
is then very sensitive to changes in the tunnel rate, which occur when an
excited state becomes accessible for tunnelling.

Figure 23a shows the electron response for a pulse amplitude larger than
was used for the data in Fig. 22. The dip now exhibits a shoulder on the
right side (indicated by “b”), which we can understand as follows. Starting
from the right (N = 0), the dip develops as soon as the ground state (GS)
is pulsed across the Fermi level EF and an electron can tunnel into the dot
(Fig. 23b). As VM is made less negative, we reach the point where both the
GS and an excited state (ES) are pulsed across EF (Fig. 23c). The effective
rate for tunnelling on the box is now the sum of the rate for tunnelling in
the GS and for tunnelling in the ES, and as a result the dip becomes deeper
(the electron response increases). When VM is made even less negative, the
one-electron GS lies below EF during both stages of the pulse, so there is
always one electron on the dot. The electron response is now zero and the dip
ends.

The derivative of a set of curves as in Fig. 23a is plotted in Fig. 23d. Three
lines are observed. The right vertical, dark line corresponds to the right flank
of the dip in Fig. 23a, the onset of tunnelling to the GS. The slanted bright
line corresponds to the left flank of the dip in Fig. 23a (with opposite sign
in the derivative) and reflects the pulse amplitude. The second, weaker, but
clearly visible dark vertical line represents an ES. The distance between the
two vertical lines is proportional to the energy difference between GS and ES.

We identify the ground and first excited state observed in this spectroscopy
experiment as the spin-up and spin-down state of a single electron on the
quantum dot. For B// = 10 T, the Zeeman energy is about 0.21 meV [54],
while the excitation energy of the first orbital excited state is of order 1 meV.
The distance between the two vertical lines can, in principle, be converted to
energy and directly provide the spin excitation energy. However, it is difficult
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Fig. 23. Excited-state spectroscopy in a one-electron dot. (a) Lock-in signal at f =
385Hz versus VM , with VP = 6 mV. The dip is half the maximum value (obtained
at low f and small VP ) from which we conclude that Γ ≈ 2.4 kHz. (b) Schematic
electrochemical potential diagrams for the case that only the GS is pulsed across
EF . (c) Idem when both the GS and an ES are pulsed across EF . (d) Derivative of
the lock-in signal with respect to VM , plotted as a function of VM and VP (individual
traces have been lined up to compensate for a fluctuating offset charge). The curve in
(a) is taken at the dotted line. The Zeeman energy splitting between the one-electron
GS (spin-up) and first ES (spin-down) is indicated by ∆EZ

to determine independently the conversion factor between gate voltage and
energy in this regime of a nearly closed quantum dot. Instead we take the
measured Zeeman splitting from an earlier transport measurement [54] and
deduce the conversion factor from gate voltage to energy, α = 105 meV/V.
This value will be used below, to convert the two-electron data to energy.

3.4 Excited-State Spectroscopy for N = 2

Figure 24a shows pulse spectroscopy data for the one-to-two electron transi-
tion, taken with the gate settings indicated by ⋄ in Fig. 22b. The rightmost
vertical line corresponds to transitions between the one-electron GS (spin-
up) and the two-electron GS (spin singlet) only. As VP is increased above
5 mV, the two-electron ES (spin triplet) also becomes accessible, leading to
an enhanced tunnel rate2. This gives rise to the left vertical line, and the dis-
tance between the two vertical lines corresponds to the singlet-triplet energy
splitting ∆EST . Converted to energy, we obtain ∆EST = 0.49 meV.

2 The expected Zeeman splitting of the triplet state is not resolved here.
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Fig. 24. Excited state spectroscopy in a two-electron dot. (a) Similar to Fig. 23d,
but for the one-to-two electron transition. Again, f = 385Hz. We clearly observe
the singlet-triplet splitting ∆EST (individual traces in (a) and (b) have been lined
up). (b) Same experiment but with f = 1.538 kHz, which increases the contrast for
excited states. An extra slanted line appears (arrow), corresponding to the N = 1ES,
spin-down. (c) Schematic electrochemical potential diagram for the case that only
the spin-down electron can leave from the two-electron GS (spin singlet). This occurs
to the left of the bright line indicated by the arrow in (b). (d) Idem when either
the spin-up or the spin-down electron can leave from the spin singlet. This occurs
to the right of the arrow in (b), and leads to a larger effective tunnel rate

Excitations of the one-electron dot can be made visible at the one-to-
two electron transition as well, by changing the pulse frequency to 1.538 kHz
(Fig. 24b). This is too fast for electrons to tunnel if only the GS is accessible,
so the rightmost line almost vanishes. However, a second slanted line becomes
visible (indicated by the arrow in Fig. 24b), corresponding not to an increased
tunnel rate into the dot (due to an N = 2 ES), but to an increased tunnel
rate out of the dot (due to an N = 1 ES). Specifically, if the pulse amplitude
is sufficiently large, either the spin-up or the spin-down electron can tunnel
out of the two-electron dot. This is explained schematically in Fig. 24c and d.

Similar experiments at the transition between two and three electrons, and
for tunnel rates to the reservoir ranging from 12 Hz to 12 kHz, yield similar
excitation spectra.

The experiments described in this section demonstrate that an electrome-
ter such as a QPC can reveal not only the charge state of a quantum dot, but
also its tunnel coupling to the outside world and the energy level spectrum of
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its internal states. We can thus access all the relevant properties of a quantum
dot, even when it is almost completely isolated from the leads.

4 Real-Time Detection of Single Electron Tunnelling

using a Quantum Point Contact

In this section, we observe individual tunnel events of a single electron be-
tween a quantum dot and a reservoir, using a nearby quantum point contact
(QPC) as a charge meter. The QPC is capacitively coupled to the dot, and
the QPC conductance changes by about 1% if the number of electrons on the
dot changes by one. The QPC is voltage biased and the current is monitored
with an IV-convertor at room temperature. At present, we can resolve tunnel
events separated by only 8 µs, limited by noise from the IV-convertor. Shot
noise in the QPC sets a 10 ns lower bound on the accessible timescales.

4.1 Charge Detectors

Fast and sensitive detection of charge has greatly propelled the study of
single-electron phenomena. The most sensitive electrometer known today is
the single-electron transistor (SET) [56], incorporated into a radio-frequency
resonant circuit [57]. Such RF-SETs can be used for instance to detect charge
fluctuations on a quantum dot, capacitively coupled to the SET island [58, 59].
Already, real-time electron tunnelling between a dot and a reservoir has been
observed on a sub-µs timescale [58].

A much simpler electrometer is the quantum point contact (QPC). The
conductance, GQ, through the QPC channel is quantized, and at the tran-
sitions between quantized conductance plateaus, GQ is very sensitive to the
electrostatic environment, including the number of electrons, N , on a dot in
the vicinity [44]. This property has been exploited to measure fluctuations in
N in real-time, on a timescale from seconds [60] down to about 10 ms [61].

Here we demonstrate that a QPC can be used to detect single-electron
charge fluctuations in a quantum dot in less than 10 µs, and analyze the
fundamental and practical limitations on sensitivity and bandwidth.

4.2 Sample and Setup

The quantum dot and QPC are defined in the two-dimensional electron gas
(2DEG) formed at a GaAs/Al0.27Ga0.73As interface 90 nm below the surface,
by applying negative voltages to metal surface gates (Fig. 25a). The device is
attached to the mixing chamber of a dilution refrigerator with a base tempera-
ture of 20 mK, and the electron temperature is ∼ 300 mK in this measurement.
The dot is set near the N = 0 to N = 1 transition, with the gate voltages
tuned such that the dot is isolated from the QPC drain, and has a small
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Fig. 25. Characterization of the experimental setup. (a) Scanning electron micro-
graph of a device as used in the experiment (gates which are grounded are hidden).
Gates T, M and R define the quantum dot (dotted circle), and gates R and Q form
the QPC. Gate P is connected to a pulse source via a coaxial cable. See [55] for a
more detailed description. (b) Schematic of the experimental set-up, including the
most relevant noise sources. The QPC is represented by a resistor, RQ. (c) Noise
spectra measured when the IV-convertor is connected to the sample (top solid trace),
and, for reference, to an open-ended 1 m twisted pair of wires (lower solid trace).
The latter represents a 300 pF load, if we include the 200 pF measured amplifier
input capacitance. The diagram also shows the calculated noise level for the 300 pF
reference load (dotted-dashed) and the shot noise limit (dashed). The left and right

axes express the noise in terms of current through the QPC and electron charge on
the dot respectively

tunnel rate, Γ , to the reservoir. Furthermore, the QPC conductance is set at
GQ = 1/RQ ≈ (30 kΩ)−1, roughly halfway the transition between GQ = 2e2/h
and GQ = 0, where it is most sensitive to the electrostatic environment3.

A schematic of the electrical circuit is shown in Fig. 25b. The QPC source
and drain are connected to room temperature electronics by signal wires,
which run through Cu-powder filters at the mixing chamber to block high fre-
quency noise (>100 MHz) coming from room temperature. Each signal wire
is twisted with a ground wire from room temperature to the mixing cham-
ber. A voltage, Vi, is applied to the source via a home-built opto-coupled
isolation stage. The current through the QPC, I, is measured via an IV-
convertor connected to the drain, and an opto-coupled isolation amplifier, both

3 Despite a B = 10 T field in the plane of the 2DEG, no spin-split plateau is visible.
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home-built as well. The IV-convertor is based on a dual low-noise JFET (In-
terfet 3602). Finally, the signal is AC-coupled to an 8th-order elliptic low-pass
filter (SRS650), and the current fluctuations, ∆I, are digitized at 2.2 × 106

14-bit samples per second (ADwin Gold).
The measurement bandwidth is limited by the low-pass filter formed by

the capacitance of the line and Cu-powder filters, CL ≈ 1.5 nF, and the input
impedance of the IV-convertor, Ri = RFB/A. Thermal noise considerations
(below) impose RFB = 10MΩ. We choose the amplifier gain A = 10000, such
that 1/(2πRiCL) ≈ 100 kHz. The bandwidth of the amplifier inside the IV-
convertor is 500 kHz, and the output ISO-amp bandwidth is 300 kHz. How-
ever, we shall see that the true limitation to measurement speed is not the
bandwidth but the signal-to-noise ratio.

4.3 Sensitivity and Speed

The measured signal corresponding to a single electron charge on the dot
amounts to ∆I ≈ 0.3 nA with the QPC biased at Vi = 1 mV, a 1% change in
the overall current I (I ≈ 30 nA, consistent with the series resistance of RQ,
Ri = 1 kΩ and the resistance of the Ohmic contacts of about 2 kΩ). Naturally,
the signal strength is proportional to Vi, but we found that for Vi ≥ 1 mV, the
dot occupation was affected, possibly due to heating. We therefore proceed
with the analysis using I = 30 nA and ∆I = 0.3 nA.

The most relevant noise sources [62] are indicated in the schematic of
Fig. 25b. In Table 1, we give an expression and value for each noise contribu-
tion in terms of rms current at the IV-convertor input, so it can be compared
directly to the signal, ∆I. We also give the corresponding value for the rms
charge noise on the quantum dot. Shot noise, ISN , is intrinsic to the QPC
and therefore unavoidable. Both ISN and ∆I are zero at QPC transmission
T = 0 or T = 1, and maximal at T = 1/2; here we use T ≤ 1/2. The effect
of thermal noise, VT , can be kept small compared to other noise sources by

Table 1. Contributions to the noise current at the IV-convertor input. By dividing
the noise current by 300 pA (the signal corresponding to one electron charge leaving
the dot), we obtain the rms charge noise on the dot

RMS Noise Current
Noise RMS Charge Noise

Source Expression A/
√

Hz e/
√

Hz

ISN

√

T (1 − T )2eI 49 × 10−15 1.6 × 10−4

VT

√

4kBT/RFB 41 × 10−15 1.4 × 10−4

VA VA
1+j2πfRQCL

RQ

VA, low f VA/RFB 32 × 10−15 1.1 × 10−4

VA, high f VA2πfCL 7.5 × 10−18f 2.5 × 10−8f
IA IA – –
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choosing RFB sufficiently large; here RFB = 10 MΩ. The JFET input voltage
noise is measured to be VA = 0.8 nV/

√
Hz. As a result of VA, it is as if a noise

current flows from the IV-convertor input leg to ground, through the QPC in
parallel with the line capacitance. Due to the capacitance, CL, the rms noise
current resulting from VA increases with frequency; it equals ∆I at 120 kHz.
There is no specification available for the JFET input current noise, IA, but
usually IA is small in JFETs.

We summarize the expected noise spectrum in Fig. 25c, and compare this
with the measured noise spectrum in the same figure. For a 300 pF reference
load, the noise level measured below a few kHz is 52 fA/

√
Hz, close to the noise

current due to VT , as expected; at high frequencies, the measured noise level
is significantly higher than would be caused by VA in combination with the
300 pF load, and appears to be dominated by IA. With the sample connected,
we observe substantial 1/f2 noise (1/f in the noise amplitude), presumably
from spurious charge fluctuations near the QPC, as well as interference at
various frequencies. Near 100 kHz, the spectrum starts to roll off because of
the 100 kHz low-pass filter formed by CL = 1.5 nF and Ri = 1 kΩ (for the
reference load, CL is only 300 pF so the filter cut-off is at 500 kHz).

From the data, we see that the measured charge noise integrated from DC
is comparable to e at 80 kHz, and 2.5 times smaller than e around 40 kHz.
We set the cut-off frequency of the external low-pass filter at 40 kHz, so we
should see clear steps in time traces of the QPC current, corresponding to
single electrons tunnelling on or off the dot.

4.4 Real-Time Single Electron Tunnelling

We test this experimentally, in the regime where the electrochemical potential
in the dot is nearly lined up with the electrochemical potential in the reservoir.
The electron can then spontaneously tunnel back and forth between the dot
and the reservoir, and the QPC current should exhibit a random telegraph
signal (RTS). This is indeed what we observe experimentally (Fig. 26). In
order to ascertain that the RTS really originates from electron tunnel events
between the dot and the reservoir, we verify that (1) the dot potential relative
to the Fermi level determines the fraction of the time an electron resides in the
dot (Fig. 26a) and (2) the dot-reservoir tunnel barrier sets the RTS frequency
(Fig. 26b). The shortest steps that clearly reach above the noise level are about
8 µs long. This is consistent with the 40 kHz filter frequency, which permits a
rise time of 8 µs.

Next, we induce tunnel events by pulsing the dot potential, so N pre-
dictably changes from 0 to 1 and back to 0. The response of the QPC current
to such a pulse contains two contributions (Fig. 27a). First, the shape of the
pulse is reflected in ∆I, as the pulse gate couples capacitively to the QPC.
Second, some time after the pulse is started, an electron tunnels into the dot
and ∆I goes down by about 300 pA. Similarly, ∆I goes up by 300 pA when
an electron leaves the dot, some time after the pulse ends. We observe that
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panel are taken with a different setting of gate M . The damped oscillation following
the pulse edges is due to the 8th-order 40 kHz filter

the time before tunnelling takes place is randomly distributed, and obtain
a histogram of this time simply by averaging over many single-shot traces
(Fig. 27b). The measured distribution decays exponentially with the tunnel
time, characteristic of a Poisson process. The average time before tunnelling
corresponds to Γ−1, and can be tuned by adjusting the tunnel barrier.
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4.5 QPC Versus SET

Our measurements clearly demonstrate that a QPC can serve as a fast and
sensitive charge detector. Compared to an SET, a QPC offers several practi-
cal advantages. First, a QPC requires fabrication and tuning of just a single
additional gate when integrated with a quantum dot defined by metal gates,
whereas an SET requires two tunnel barriers, and a gate to set the island po-
tential. Second, QPCs are more robust and easy to use in the sense that spu-
rious, low-frequency fluctuations of the electrostatic potential hardly change
the QPC sensitivity to charges on the dot (the transition between quantized
conductance plateaus has an almost constant slope over a wide range of elec-
trostatic potential), but can easily spoil the SET sensitivity.

With an RF-SET, a sensitivity to charges on a quantum dot of ≈2 ×
10−4e/

√
Hz has been reached [58], and theoretically even a ten times better

sensitivity is possible [57]. Could a QPC reach similar sensitivities?
The noise level in the present measurement could be reduced by a factor

of two or three using a JFET input-stage which better balances input voltage
noise and input current noise. Further improvements can be obtained by low-
ering the capacitance of the filters in the line, or the line capacitance itself,
by placing the IV-convertor close to the sample, inside the refrigerator.

Much more significant reductions in the instrumentation noise could be
realized by embedding the QPC in a resonant electrical circuit and measuring
the damping of the resonator. We estimate that with an “RF-QPC” and a
low-temperature HEMT amplifier, a sensitivity of 2 × 10−4e/

√
Hz could be

achieved with the present sample. The noise from the amplifier circuitry is
then only 2.5 times larger than the shot noise level.

To what extent the signal can be increased is unclear, as we do not yet
understand the mechanism through which the dot occupancy is disturbed for
Vi > 1 mV4. Certainly, the capacitive coupling of the dot to the QPC channel
can easily be five times larger than it is now by optimizing the gate design [60].
Keeping Vi = 1 mV , the sensitivity would then be 4×10−5e/

√
Hz, and a single

electron charge on the dot could be measured within a few ns.
Finally, we point out that a QPC can reach the quantum limit of detec-

tion [63, 64], where the measurement induced decoherence takes the minimum
value permitted by quantum mechanics. Qualitatively, this is because (1) in-
formation on the charge state of the dot is transferred only to the QPC current
and not to degrees of freedom which are not observed, and (2) an external
perturbation in the QPC current does not couple back to the charge state of
the dot.

4 The statistics of the RTS were altered for Vi > 1 mV, irrespective of (1) whether
Vi was applied to the QPC source or drain, (2) the potential difference between
the reservoir and the QPC source/drain, and (3) the QPC transmission T .
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5 Single-Shot Read-Out of an Individual Electron Spin

in a Quantum Dot

Spin is a fundamental property of all elementary particles. Classically it can
be viewed as a tiny magnetic moment, but a measurement of an electron spin
along the direction of an external magnetic field can have only two outcomes:
parallel or anti-parallel to the field [65]. This discreteness reflects the quantum
mechanical nature of spin. Ensembles of many spins have found diverse appli-
cations ranging from magnetic resonance imaging [66] to magneto-electronic
devices [67], while individual spins are considered as carriers for quantum in-
formation. Read-out of single spin states has been achieved using optical tech-
niques [68], and is within reach of magnetic resonance force microscopy [69].
However, electrical read-out of single spins [2, 49, 70, 71, 72, 73, 74, 75] has so
far remained elusive. Here, we demonstrate electrical single-shot measurement
of the state of an individual electron spin in a semiconductor quantum dot
[40]. We use spin-to-charge conversion of a single electron confined in the dot,
and detect the single-electron charge using a quantum point contact; the spin
measurement visibility is ∼65%. Furthermore, we observe very long single-
spin energy relaxation times (up to ∼0.85 ms at a magnetic field of 8 Tesla),
which are encouraging for the use of electron spins as carriers of quantum
information.

5.1 Measuring Electron Spin in Quantum Dots

In quantum dot devices, single electron charges are easily measured. Spin
states in quantum dots, however, have only been studied by measuring the
average signal from a large ensemble of electron spins [54, 68, 77, 78, 79, 80].
In contrast, the experiment presented here aims at a single-shot measurement
of the spin orientation (parallel or antiparallel to the field, denoted as spin-↑
and spin-↓, respectively) of a particular electron; only one copy of the electron
is available, so no averaging is possible. The spin measurement relies on spin-
to-charge conversion [54, 79] followed by charge measurement in a single-shot
mode [58, 59]. Figure 28a schematically shows a single electron spin confined
in a quantum dot (circle). A magnetic field is applied to split the spin-↑ and
spin-↓ states by the Zeeman energy. The dot potential is then tuned such that
if the electron has spin-↓ it will leave, whereas it will stay on the dot if it
has spin-↑. The spin state has now been correlated with the charge state, and
measurement of the charge on the dot will reveal the original spin state.

5.2 Implementation

This concept is implemented using a structure [55] (Fig. 28b) consisting of
a quantum dot in close proximity to a quantum point contact (QPC). The
quantum dot is used as a box to trap a single electron, and the QPC is
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Fig. 28. Spin-to-charge conversion in a quantum dot coupled to a quantum point
contact. (a) Principle of spin-to-charge conversion. The charge on the quantum dot,
Qdot, remains constant if the electron spin is ↑, whereas a spin-↓ electron can escape,
thereby changing Qdot. (b) Scanning electron micrograph of the metallic gates on
the surface of a GaAs/Al0.27Ga0.73As heterostructure containing a two-dimensional
electron gas (2DEG) 90 nm below the surface. The electron density is 2.9 × 1015 m−2.
(Only the gates used in the present experiment are shown, the complete device is
described in [55].) Electrical contact is made to the QPC source and drain and to the
reservoir via Ohmic contacts. By measuring the current through the QPC channel,
IQPC , we can detect changes in Qdot that result from electrons tunnelling between
the dot and the reservoir (with a tunnel rate Γ ). With a source-drain bias voltage
of 1 mV, IQPC is about 30 nA, and an individual electron tunnelling on or off the
dot changes IQPC by ∼0.3 nA. The QPC-current is sent to a room temperature
current-to-voltage convertor, followed by a gain 1 isolation amplifier, an AC-coupled
40 kHz SRS650 low-pass filter, and is digitized at a rate of 2.2×106 samples/s. With
this arrangement, the step in IQPC resulting from an electron tunnelling is clearly
larger than the rms noise level, provided it lasts at least 8 µs. A magnetic field, B,
is applied in the plane of the 2DEG

operated as a charge detector in order to determine whether the dot contains
an electron or not. The quantum dot is formed in the two-dimensional electron
gas (2DEG) of a GaAs/AlGaAs heterostructure by applying negative voltages
to the metal surface gates M , R, and T . This depletes the 2DEG below the
gates and creates a potential minimum in the centre, that is, the dot (indicated
by a dotted white circle). We tune the gate voltages such that the dot contains
either zero or one electron (which we can control by the voltage applied to
gate P ). Furthermore, we make the tunnel barrier between gates R and T
sufficiently opaque that the dot is completely isolated from the drain contact
on the right. The barrier to the reservoir on the left is set [81] to a tunnel
rate Γ ≈ (0.05 ms)−1. When an electron tunnels on or off the dot, it changes
the electrostatic potential in its vicinity, including the region of the nearby
QPC (defined by R and Q). The QPC is set in the tunnelling regime, so that
the current, IQPC , is very sensitive to electrostatic changes [44]. Recording
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changes in IQPC thus permits us to measure on a timescale of about 8 µs
whether an electron resides on the dot or not (L.M.K.V. et al., see Sect. 4). In
this way the QPC is used as a charge detector with a resolution much better
than a single electron charge and a measurement timescale almost ten times
shorter than 1/Γ .

The device is placed inside a dilution refrigerator, and is subject to a
magnetic field of 10 T (unless noted otherwise) in the plane of the 2DEG.
The measured Zeeman splitting in the dot [54], ∆EZ ≈ 200 µeV, is larger
than the thermal energy (25 µeV) but smaller than the orbital energy level
spacing (1.1 meV) and the charging energy (2.5 meV).

5.3 Two-Level Pulse Technique

To test our single-spin measurement technique, we use an experimental pro-
cedure based on three stages: (1) empty the dot, (2) inject one electron with
unknown spin, and (3) measure its spin state. The different stages are con-
trolled by voltage pulses on gate P (Fig. 29a), which shift the dot’s energy
levels (Fig. 29c). Before the pulse the dot is empty, as both the spin-↑ and
spin-↓ levels are above the Fermi energy of the reservoir, EF . Then a volt-
age pulse pulls both levels below EF . It is now energetically allowed for an
electron to tunnel onto the dot, which will happen after a typical time ∼Γ−1.
The particular electron can have spin-↑ (shown in the lower diagram) or spin-↓
(upper diagram). (The tunnel rate for spin-↑ electrons is expected to be larger
than that for spin-↓ electrons [82], i.e. Γ↑ > Γ↓, but we do not assume this
a priori.) During this stage of the pulse, lasting twait, the electron is trapped
on the dot and Coulomb blockade prevents a second electron to be added.
After twait the pulse is reduced, in order to position the energy levels in the
read-out configuration. If the electron spin is ↑, its energy level is below EF ,
so the electron remains on the dot. If the spin is ↓, its energy level is above
EF , so the electron tunnels to the reservoir after a typical time ∼Γ−1

↓ . Now
Coulomb blockade is lifted and an electron with spin-↑ can tunnel onto the
dot. This occurs on a timescale ∼Γ−1

↑ (with Γ = Γ↑ + Γ↓). After tread, the
pulse ends and the dot is emptied again.

The expected QPC-response, ∆IQPC , to such a two-level pulse is the sum
of two contributions (Fig. 29b). First, due to a capacitive coupling between
pulse-gate and QPC, ∆IQPC will change proportionally to the pulse ampli-
tude. Thus, ∆IQPC versus time resembles a two-level pulse. Second, ∆IQPC

tracks the charge on the dot, i.e. it goes up whenever an electron tunnels
off the dot, and it goes down by the same amount when an electron tunnels
on the dot. Therefore, if the dot contains a spin-↓ electron at the start of the
read-out stage, ∆IQPC should go up and then down again. We thus expect
a characteristic step in ∆IQPC during tread for spin-↓ (dotted trace inside
gray circle). In contrast, ∆IQPC should be flat during tread for a spin-↑ elec-
tron. Measuring whether a step is present or absent during the read-out stage
constitutes our spin measurement.



Semiconductor Few-Electron Quantum Dots as Spin Qubits 75

E

E

E
F

∆
I Q

P
C

V
P

(m
V

)

time

time

in

twait

Qdot= -e

Qdot=0

inject & wait

read-out empty

out

empty

a

b

c

Qdot=0

tread

out in

10

5

0

Fig. 29. Two-level pulse technique used to inject a single electron and measure its
spin orientation. (a) Shape of the voltage pulse applied to gate P . The pulse level
is 10 mV during twait and 5 mV during tread (which is 0.5 ms for all measurements).
(b) Schematic QPC pulse-response if the injected electron has spin-↑ (solid line) or
spin-↓ (dotted line; the difference with the solid line is only seen during the read-out
stage). Arrows indicate the moment an electron tunnels into or out of the quantum
dot. (c) Schematic energy diagrams for spin-↑ (E↑) and spin-↓ (E↓) during the
different stages of the pulse. Black vertical lines indicate the tunnel barriers. The
tunnel rate between the dot and the QPC-drain on the right is set to zero. The rate
between the dot and the reservoir on the left is tuned to a specific value, Γ . If the
spin is ↑ at the start of the read-out stage, no change in the charge on the dot occurs
during tread. In contrast, if the spin is ↓, the electron can escape and be replaced
by a spin-↑ electron. This charge transition is detected in the QPC-current (dotted
line inside gray circle in (b))

5.4 Tuning the Quantum Dot into the Read-Out Configuration

To perform spin read-out, VM has to be fine-tuned so that the position of the
energy levels with respect to EF is as shown in Fig. 29c. To find the correct
settings, we apply a two-level voltage pulse and measure the QPC-response
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Fig. 30. Tuning the quantum dot into the spin read-out configuration. We apply a
two-stage voltage pulse as in Fig. 29a (twait = 0.3 ms, tread = 0.5 ms), and measure
the QPC-response for increasingly negative values of VM . (a) QPC-response (in
colour-scale) versus VM . Four different regions in VM can be identified (separated by
white dotted lines), with qualitatively different QPC-responses. (b) Typical QPC-
response in each of the four regions. This behaviour can be understood from the
energy levels during all stages of the pulse. (c) Schematic energy diagrams showing
E↑ and E↓ with respect to EF before and after the pulse (upper pair), during twait

(lower pair) and during tread (middle pair), for four values of VM . For the actual spin
read-out experiment, VM is set to the optimum position (indicated by the arrow in a)

for increasingly negative values of VM (Fig. 30a). Four different regions in VM

can be identified (separated by white dotted lines), with qualitatively different
QPC-responses. The shape of the typical QPC-response in each of the four
regions (Fig. 30b) allows us to infer the position of E↑ and E↓ with respect
to EF during all stages of the pulse (Fig. 30c).

In the top region, the QPC-response just mimics the applied two-level
pulse, indicating that here the charge on the dot remains constant throughout
the pulse. This implies that E↑ remains below EF for all stages of the pulse,
thus the dot remains occupied with one electron. In the second region from
the top, tunnelling occurs, as seen from the extra steps in ∆IQPC . The dot is
empty before the pulse, then an electron is injected during twait, which escapes
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after the pulse. This corresponds to an energy level diagram similar to before,
but with E↑ and E↓ shifted up due to the more negative value of VM in this
region. In the third region from the top, an electron again tunnels on the dot
during twait, but now it can escape already during tread, irrespective of its
spin. Finally, in the bottom region no electron-tunnelling is seen, implying
that the dot remains empty throughout the pulse.

Since we know the shift in VM corresponding to shifting the energy levels by
∆EZ , we can set VM to the optimum position for the spin read-out experiment
(indicated by the arrow). For this setting, the energy levels are as shown in
Fig. 29c, i.e. EF is approximately in the middle between E↑ and E↓ during
the read-out stage.

5.5 Single-Shot Read-Out of One Electron Spin

Figure 31a shows typical experimental traces of the pulse-response recorded
after proper tuning of the DC gate voltages (see Fig. 30). We emphasize that
each trace involves injecting one particular electron on the dot and subse-
quently measuring its spin state. Each trace is therefore a single-shot mea-
surement. The traces we obtain fall into two different classes; most traces
qualitatively resemble the one in the top panel of Fig. 31a, some resemble
the one in the bottom panel. These two typical traces indeed correspond to
the signals expected for a spin-↑ and a spin-↓ electron (Fig. 29b), a strong
indication that the electron in the top panel of Fig. 31a was spin-↑ and in
the bottom panel spin-↓. The distinct signature of the two types of responses
in ∆IQPC permits a simple criterion for identifying the spin5: if ∆IQPC goes
above the threshold value (red line in Fig. 31a and chosen as explained be-
low), we declare the electron “spin-down”; otherwise we declare it “spin-up”.
Figure 31b shows the read-out section of twenty more “spin-down” traces, to
illustrate the stochastic nature of the tunnel events.

The random injection of spin-↑ and spin-↓ electrons prevents us from check-
ing the outcome of any individual measurement. Therefore, in order to further
establish the correspondence between the actual spin state and the outcome

5 The automated data analysis procedure first corrects for the offset of each trace.
This offset, resulting from low-frequency interference signals or charge switches,
is found by making a histogram of the QPC current during the read-out stage
of a particular trace. The histogram typically displays a peak due to fluctuations
around the average value corresponding to an occupied dot. The center of a
gaussian fit to the histogram gives the offset. Then each trace is checked to make
sure that an electron was injected during the injection stage, by evaluating if
the signal goes below the injection threshold (dotted horizontal line in Fig. 33a).
If not, the trace is disregarded. Finally, to determine if a trace corresponds to
“spin-up” or “spin-down”, we disregard all points that lie below the previous
point (since these could correspond to points on the falling pulse flank at the end
of the injection stage), and check if any of the remaining points are above the
threshold.
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Fig. 31. Single-shot read-out of one electron spin. (a) Time-resolved QPC mea-
surements. Top panel: an electron injected during twait is declared “spin-up” during
tread. Bottom panel: the electron is declared “spin-down”. (b) Examples of “spin-
down” traces (for twait = 0.1 ms). Only the read-out segment is shown, and traces
are offset for clarity. The time when ∆IQPC first crosses the threshold, tdetect, is
recorded to make the histogram in Fig. 34a. (c) Fraction of “spin-down” traces
versus twait, out of 625 traces for each waiting time. Open dot: spin-down fraction
using modified pulse shape (d). Solid line: exponential fit to the data. Inset: T1

versus B. (d) Typical QPC-signal for a “reversed” pulse, with the same amplitudes
as in Fig. 29a, but a reversed order of the two stages. The leftmost threshold (dotted
line) is used in Fig. 34b
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of our spin measurement, we change the probability to have a spin-↓ at the
beginning of the read-out stage, and compare this with the fraction of traces
in which the electron is declared “spin-down”. As twait is increased, the time
between injection and read-out, thold, will vary accordingly (thold ≈ twait).
The probability for the spin to be ↓ at the start of tread will thus decay
exponentially to zero, since electrons in the excited spin state will relax to
the ground state (kBT ≪ ∆EZ). For a set of 15 values of twait we take 625
traces for each twait, and count the fraction of traces in which the electron
is declared “spin-down” (Fig. 31c). The fact that the expected exponential
decay is clearly reflected in the data confirms the validity of the spin read-out
procedure.

We extract a single-spin energy relaxation time, T1, from fitting the dat-
apoints in Fig. 31c (and two other similar measurements) to α + C exp(−
twait/T1), and obtain an average value of T1 ≈ (0.55 ± 0.07) ms at 10 Tesla.
This is an order of magnitude longer than the lower bound on T1 estab-
lished earlier [54], and clearly longer than the time needed for the spin mea-
surement (of order 1/Γ↓ ≈ 0.11 ms). A similar experiment at 8 Tesla gives
T1 ≈ (0.85± 0.11) ms and at 14 Tesla we find T1 ≈ (0.12± 0.03) ms (Fig. 32).
More experiments are needed in order to test the theoretical prediction that
relaxation at high magnetic fields is dominated by spin-orbit interactions
[22, 83, 84], with smaller contributions resulting from hyperfine interactions
with the nuclear spins [83, 85] (cotunnelling is insignificant given the very
small tunnel rates). We note that the obtained values for T1 refer to our en-
tire device under active operation: i.e. a single spin in a quantum dot subject
to continuous charge detection by a QPC.
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5.6 Measurement Fidelity

For applications in quantum information processing it is important to know
the accuracy, or fidelity, of the single-shot spin read-out. The measurement
fidelity is characterised by two parameters, α and β (inset to Fig. 34a), which
we now determine for the data taken at 10 T.

The parameter α corresponds to the probability that the QPC-current ex-
ceeds the threshold even though the electron was actually spin-↑, for instance
due to thermally activated tunnelling or electrical noise (similar to “dark
counts” in a photon detector). The combined probability for such processes
is given by the saturation value of the exponential fit in Fig. 31c, α, which
depends on the value of the threshold current. We analyse the data in Fig. 31c
using different thresholds, and plot α in Fig. 34b.

The parameter β corresponds to the probability that the QPC-current
stays below the threshold even though the electron was actually spin-↓ at the
start of the read-out stage. Unlike α, β cannot be extracted directly from the
exponential fit (note that the fit parameter C = p(1 − α − β) contains two
unknowns: p = Γ↓/(Γ↑+Γ↓) and β). We therefore estimate β by analysing the
two processes that contribute to it. First, a spin-↓ electron can relax to spin-
↑ before spin-to-charge conversion takes place. This occurs with probability
β1 = 1/(1 + T1Γ↓). From a histogram (Fig. 34a) of the actual detection time,
tdetect (see Fig. 31b), we find Γ−1

↓ ≈ 0.11 ms, yielding β1 ≈ 0.17. Second, if
the spin-↓ electron does tunnel off the dot but is replaced by a spin-↑ electron
within about 8 µs, the resulting QPC-step is too small to be detected. The
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Fig. 34. Measurement fidelity. (a) Histogram showing the distribution of detection
times, tdetect, in the read-out stage (see Fig. 31b for definition tdetect). The expo-
nential decay is due to spin-↓ electrons tunnelling out of the dot (rate = Γ↓) and
due to spin flips during the read-out stage (rate = 1/T1). Solid line: exponential fit
with a decay time (Γ↓ + 1/T1)

−1 of 0.09 ms. Given that T1 = 0.55 ms, this yields
Γ−1

↓ ≈ 0.11 ms. Inset: fidelity parameters. A spin-↓ electron is declared “down” (d)
or “up” (u) with probability 1 − β or β, respectively. A spin-↑ electron is declared
“up” or “down” with probability 1−α or α, respectively. (b) Open squares represent
α, obtained from the saturation value of exponential fits as in Fig. 31c for differ-
ent values of the read-out threshold. A current of 0.54 nA (0.91 nA) corresponds to
the average value of ∆IQPC when the dot is occupied (empty) during tread. Open

diamonds: measured fraction of “reverse-pulse” traces in which ∆IQPC crosses the
injection threshold (dotted black line in Fig. 31d). This fraction approximates 1−β2,
where β2 is the probability of identifying a spin-↓ electron as “spin-up” due to the
finite bandwidth of the measurement setup. Filled circles: total fidelity for the spin-
↓ state, 1 − β, calculated using β1 = 0.17. The vertical dotted line indicates the
threshold for which the visibility 1 − α − β (separation between filled circles and
open squares) is maximal. This threshold value of 0.73 nA is used in the analysis of
Fig. 31

probability that a step is missed, β2, depends on the value of the threshold.
It can be determined by applying a modified (“reversed”) pulse (Fig. 31d).
For such a pulse, we know that in each trace an electron is injected in the
dot, so there should always be a step at the start of the pulse. The fraction
of traces in which this step is nevertheless missed, i.e. ∆IQPC stays below
the threshold (dotted black line in Fig. 31d), gives β2. We plot 1 − β2 in
Fig. 34b (open diamonds). The resulting total fidelity for spin-↓ is given by
1− β ≈ (1− β1)(1− β2) + (αβ1). The last term accounts for the case when a
spin-↓ electron is flipped to spin-↑, but there is nevertheless a step in ∆IQPC

due to the dark-count mechanism6. In Fig. 34b we also plot the extracted
value of 1 − β as a function of the threshold.

6 Let us assume there is a spin-↓ electron on the dot at the start of the read-out
stage. The probability that the ↓-electron tunnels out (i.e. that it does not relaxto
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We now choose the optimal value of the threshold as the one for which
the visibility 1 − α − β is maximal (dotted vertical line in Fig. 34b). For this
setting, α ≈ 0.07, β1 ≈ 0.17, β2 ≈ 0.15, so the measurement fidelity for the
spin-↑ and the spin-↓ state is ∼0.93 and ∼0.72 respectively. The measurement
visibility in a single-shot measurement is thus at present 65%.

Significant improvements in the spin measurement visibility can be made
by lowering the electron temperature (smaller α) and especially by making the
charge measurement faster (smaller β). Already, the demonstration of single-
shot spin read-out and the observation of T1 of order 1 ms are encouraging
results for the use of electron spins as quantum bits.

6 Semiconductor Few-Electron Quantum Dots

as Spin Qubits

In the previous sections we have described experiments aimed at creating
a quantum dot spin qubit according to the proposal by Loss and DiVin-
cenzo [2] (see also paragraph 1.3). The key ingredients for these experiments –
performed over the last two years – are a fully tunable few-electron double
quantum dot and a quantum point contact (QPC) charge detector. We have
operated the QPC in three different ways:

1. By measuring its DC conductance, changes in the average charge on the
double dot are revealed, which can be used to identify the charge configu-
ration of the system.

2. By measuring the conductance in real-time (with a bandwidth of ∼100 kHz),
we can detect individual electrons tunnelling on or off the dot (in less than
10 µs).

3. By measuring the QPC response to a gate voltage pulse train (with the
proper frequency) using a lock-in amplifier, we can determine the tunnel
rate between the dot and a reservoir. In addition, by using a large pulse am-
plitude and measuring changes in the effective tunnel rate, we can identify
excited states of the dot.

Using these techniques, we have demonstrated that our GaAs/AlGaAs quan-
tum dot circuit is a promising candidate for a spin qubit. However, we do
not have a fully functional qubit yet, as coherent manipulation of a single-
or a two-spin system has so far remained elusive. In this section, we evaluate
the experimental status of the spin qubit project in terms of the DiVincenzo

spin-↑) is given by 1− β1. The probability that this tunnel event is detected (i.e.
is not too fast) is given by 1−β2. Therefore, the probability that a spin-↓ electron
tunnels out and is detected, is (1−β1)(1−β2). In addition, there is the possibility
that the ↓-electron relaxes, with probability β1, but a step in the QPC signal is
nevertheless detected, with probability α, due to the “dark count” mechanism.
Therefore, the total probability that a spin-↓ electron is declared “spin-down” is
given by (1 − β1)(1 − β2) + (αβ1) approximately.
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requirements [17]. Fabrication and characterization of a double quantum dot
containing two coupled spins has been achieved, as well as initialization and
single-shot read-out of the spin state. The single-spin relaxation time was
found to be very long, but the decoherence time is still unknown. We present
concrete ideas on how to proceed towards coherent spin operations. Single-spin
manipulation relies on a microfabricated wire located close to the quantum
dot, and two-spin interactions are controlled via the tunnel barrier connecting
the respective quantum dots. To demonstrate superposition and entanglement
of spin states, we plan to use a charge detection approach, without relying on
transport measurements.

6.1 Qubit

The first of the five DiVincenzo requirements is to have a scalable physical
system with well-characterized qubits. We have fabricated double quantum
dot devices in which a single electron can be confined in each of the two dots
(see Sect. 2). The spin states | ↑〉 and | ↓〉 of the electron, subject to a large
magnetic field B, correspond to the two states of the proposed qubit two-level
system. The Zeeman splitting, ∆EZ , between the two states can be tuned
with the magnetic field, according to ∆EZ = gµBB, with g ≈ −0.44 the
electron g-factor in GaAs [54], and µB the Bohr magneton.

These one-electron dots can be fully characterized using a QPC as a charge
detector, with the techniques developed in Sects. 2 and 3. First of all, we can
use the QPC to monitor the charge configuration of the double dot, in order
to reach the regime where both dots contain just a single electron. Then we
can evaluate and tune the tunnel rate from each dot to the reservoir using the
lock-in technique described above. The same technique can be employed to de-
termine the energy spectrum of each of the two dots, i.e. the Zeeman splitting
between the two qubit states, as well as the energy of orbital excited states.
Furthermore, the QPC can be used to monitor the inter-dot tunnel barrier,
both qualitatively (from the curvature of lines in the honeycomb diagram,
as shown in Fig. 2.6) and quantitatively (by performing photon-assisted tun-
nelling spectroscopy to measure the tunnel splitting between the one-electron
bonding and anti-bonding state, as in [86]). In principle, it is even possible
to use the lock-in technique to measure the exchange splitting J between the
delocalized two-electron singlet and triplet spin states. However, in practical
situations the splitting might be too small (<20 µeV) to be resolved using
tunnelling spectroscopy.

We can thus determine all relevant parameters of the two-spin system
without performing transport measurements. The essential advantage of the
QPC technique is that it works even for a dot that is very weakly coupled to
just a single reservoir, with a tunnel rate between zero and ∼100 kHz (limited
by the bandwidth of the current measurement setup). This gives us more
freedom to design simpler dots with fewer gates, which could therefore be
easier to operate.
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6.2 Read-Out

We have achieved single-shot read-out of the spin orientation of an individual
electron in a quantum dot (see Sect. 5). Our approach utilizes the Zeeman
splitting, induced by a large magnetic field parallel to the 2DEG, to create
spin-to-charge conversion (Fig. 35a). This is followed by real-time detection
of single-electron tunnelling events using the QPC. The total visibility of the
spin measurement is ∼65%, limited mostly by the ∼40 kHz bandwidth of our
current measurement setup, and also by thermal excitation of electrons out of
the quantum dot, due to the high effective electron temperature of ∼300 mK.

EF

a b

∆EZ

↑

↓
↑

↓
∆EZ

EF

Fig. 35. Schematic energy diagrams depicting spin-to-charge conversion based on
a difference in energy (a) between | ↑〉 and | ↓〉, or on a difference in tunnel rate (b)

We estimate that we can improve the visibility of the spin read-out tech-
nique to more than 90% by lowering the electron temperature below 100 mK,
and especially by using a faster way to measure the charge on the dot. This
could be possible with a “radio-frequency QPC” (RF-QPC), similar to the
well-known RF-SET [57]. In this approach, the QPC is embedded in an LC
circuit with a resonant frequency of ∼1 GHz. By measuring the reflection or
transmission of a resonant carrier wave, we estimate that it should be possible
to read out the charge state of the nearby quantum dot in ∼1 µs, an order of
magnitude faster than is currently attainable.

A disadvantage of the read-out technique based on the Zeeman splitting is
that it relies on accurate positioning of the dot-levels with respect to the Fermi
energy of the reservoir, EF (see Fig. 35a). This makes the spin read-out very
sensitive to charge switches, which can easily push the | ↑〉 level above EF ,
or pull | ↓〉 below EF , resulting in a measurement error. To counteract this
effect, a large enough Zeeman splitting is required (in Sect. 5 a magnetic field
of more than 8 Tesla was used, although with a more stable sample a lower
field might be sufficient). On the other hand, a smaller Zeeman splitting is
desirable because it implies a lower and therefore more convenient resonance
frequency for coherent spin manipulation. In addition, the spin relaxation time
is expected to be longer at smaller ∆EZ . Therefore, a different spin read-out
mechanism that is less sensitive to charge switches and can function at lower
fields would be very useful.
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A particularly convenient way to perform spin-to-charge conversion could
be provided by utilizing not a difference in energy between spin-up and spin-
down, but a difference in tunnel rate (Fig. 35b). To read out the spin orien-
tation of an electron on the dot, we simply raise both dot levels above EF , so
that the electron can leave the dot. If the tunnel rate for spin-up electrons,
Γ↑, is much larger than that for spin-down electrons, Γ↓, then at a suitably
chosen time the dot will have a large probability to be already empty if the
spin was up, but a large probability to be still occupied if the spin is down.
Measuring the charge on the dot within the spin relaxation time can then
reveal the spin state.

This scheme is very robust against charge switches, since no precise po-
sitioning of the dot levels with respect to the leads is required: both levels
simply have to be above EF . Also, switches have a small influence on the
tunnel rates themselves, as they tend to shift the whole potential landscape
up or down, which does not change the tunnel barrier for electrons in the
dot [87]. Of course, the visibility of this spin measurement scheme depends on
the difference in tunnel rate we can achieve.

A difference in tunnel rate for spin-up and spin-down electrons is provided
by the magnetic field. From large-bias transport measurements in a magnetic
field parallel to the 2DEG [82], we find that the spin-selectivity (Γ↑/Γ↓) grows
roughly linearly from ∼1.5 at 5 Tesla to ∼5 at 14 Tesla. This is in good
agreement with the spin-selectivity of about 3 that was found at 10 Tesla
using the single-shot spin measurement technique of Sect. 5.

We believe that this spin-dependence of the tunnel rates is due to exchange
interactions in the reservoirs. If ∆EZ is the same in the dot as in the reservoirs,
the tunnel barrier will be the same for | ↑〉 and | ↓〉 electrons, giving Γ↑ = Γ↓

(Fig. 36a). However, close to the dot there is a region with only | ↑〉 electrons,
where an electron that is excited from | ↑〉 to | ↓〉 must overcome not only
the single-particle Zeeman energy but also the many-body exchange energy
between the reservoir electrons [88]. We can describe this situation with an
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Fig. 36. Exchange interaction in the reservoirs leading to spin-selective tunnel rates.
(a) Schematic diagram of the conduction band edge ECB near the dot for electrons
with spin-up (solid line) and spin-down (dashed line). If ∆EZ in the reservoirs is
the same as in the dot, the tunnel rates do not depend on spin. (b) The exchange
energy EX in the reservoirs close to the dot induces spin-dependent tunnel rates
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effective g-factor geff , which can be larger than the bare g-factor (Fig. 36b). In
this case, | ↓〉 electrons experience a thicker tunnel barrier than | ↑〉 electrons,
resulting in a difference in tunnel rates [43].

In a magnetic field parallel to the 2DEG, the effect only leads to a modest
spin-selectivity that does not allow a single-shot measurement. However, a
much larger spin-selectivity is possible in a perpendicular magnetic field [88],
i.e. in the Quantum Hall regime. Magnetotransport measurements in 2DEGs
with odd filling factor have shown that the g-factor can be enhanced by as
much as a factor of ten, depending on the field strength. We anticipate that
a convenient perpendicular field of ∼4 T could already give enough spin-
selectivity to allow high-fidelity spin read-out. Therefore, spin read-out should
be feasible not only in a large parallel magnetic field, but also in a somewhat
smaller perpendicular field.

6.3 Initialization

Initialization of the spin to the pure state | ↑〉 – the desired initial state for
most quantum algorithms [1] – has been demonstrated in Sect. 5. There it was
shown that by waiting long enough, energy relaxation will cause the the spin
on the dot to relax to the | ↑〉 ground state (Fig. 37a). This is a very simple
and robust initialization approach, which can be used for any magnetic field
orientation (provided that gµBB > 5kBT ). However, as it takes about 5T1

to reach equilibrium, it is also a very slow procedure (≥10 ms), especially at
lower magnetic fields, where the spin relaxation time T1 might be very long.

A faster initialization method has been used in the “reverse pulse” tech-
nique in Sect. 5. By placing the dot in the read-out configuration (Fig. 37b),
a spin-up electron will stay on the dot, whereas a spin-down electron will be
replaced by a spin-up. After waiting a few times the sum of the typical tun-
nel times for spin-up and spin-down (∼1/Γ↑ + 1/Γ↓), the spin will be with
large probability in the | ↑〉 state. This initialization procedure can therefore
be quite fast (<1 ms), depending on the tunnel rates.

EF
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Fig. 37. Schematic energy diagrams depicting initialization procedures in a large
parallel or perpendicular magnetic field. (a) Spin relaxation to pure state | ↑〉.
(b) The “read-out” configuration can result in | ↑〉 faster. (c) Random spin injection
gives a statistical mixture of | ↑〉 and | ↓〉. (d) In a large perpendicular field providing
a strong spin-selectivity, injection results mostly in | ↑〉
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We also have the possibility to initialize the dot to a mixed state, where
the spin is probabilistically in | ↑〉 or | ↓〉. In Sect. 5, mixed-state initialization
was demonstrated in a parallel field by first emptying the dot, followed by
placing both spin levels below EF during the “injection stage” (Fig. 37c).
The dot is then randomly filled with either a spin-up or a spin-down electron.
This is very useful, e.g. to test two-spin operations (see paragraph 6.6).

In a large perpendicular field providing a strong spin-selectivity, initializa-
tion to the | ↑〉 state is possible via spin relaxation (Fig. 37a) or via direct
injection (Fig. 37d). Initialization to a mixed state (or in fact to any state other
than | ↑〉) is very difficult due to the spin-selectivity. It probably requires the
ability to coherently rotate the spin from | ↑〉 to | ↓〉 (see paragraph 6.5).

6.4 Coherence Times

The long-term potential of GaAs quantum dots as electron spin qubits clearly
depends crucially on the spin coherence times T1 and T2. In Sect. 5, we have
shown that the single-spin relaxation time, T1, can be very long – on the order
of 1 ms at 8 T. This implies that the spin is only very weakly disturbed by the
environment. The dominant relaxation mechanism at large magnetic field is
believed to be the coupling of the spin to phonons, mediated by the spin-orbit
interaction [22].

The fundamental quantity of interest for spin qubits is the decoherence
time of a single electron spin in a quantum dot, T2, which has never been mea-
sured. Experiments with electrons in 2DEGs have established an ensemble-
averaged decoherence time, T ∗

2 , of ∼100 ns [89]. Recently, a similar lower
bound on T2 has been claimed for a single trapped electron spin, based on the
linewidth of the observed electron spin resonance [90]. Theoretically, it has
been suggested that the real value of T2 can be much longer [22], and under
certain circumstances could even be given by T2 = 2T1, limited by the same
spin-orbit interactions that limit T1.

To build a scalable quantum computer, a sufficiently long T2 (correspond-
ing to more than 104 times the gate operation time) is essential in order to
reach the “accuracy threshold”. However, for experiments in the near future,
we only need to perform a few spin rotations within T2, which might already
be possible for much shorter T2, on the order of a µs. This should also be long
enough to perform two-spin operations, which are likely to be much faster. To
find the actual value of T2, the ability to perform coherent spin operations is
required. This is discussed in the next paragraphs.

6.5 Coherent Single-Spin Manipulation: ESR

We have not yet satisfied the key requirement for an actual spin qubit: coher-
ent manipulation of one- and two-spin states. To controllably create super-
positions of | ↑〉 and | ↓〉, we can use the well-known electron spin resonance
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(ESR) effect. A microwave magnetic field Bac oscillating in the plane per-
pendicular to B, at a frequency f = gµBB/h (in resonance with the spin
precession about B) causes the spin to make transitions between | ↑〉 and
| ↓〉. The choice of B strength is a trade-off between reliable initialization and
read-out (strong B is better) and experimental convenience (low f is easier).
We expect that a perpendicular field of 4 Tesla should be sufficient to provide
high-fidelity read-out and initialization, with f ≈ 25 GHz (for g = −0.44).
Alternatively, in a parallel field we may have to go up to 8 Tesla, correspond-
ing to f ≈ 45 GHz [54], for high-fidelity spin measurement. However, since
single-shot read-out is not strictly required, a somewhat lower field could also
be enough.

Properly timed bursts of microwave power tip the spin state over a con-
trolled angle, e.g. 90◦ or 180◦. In order to observe Rabi oscillations, the Rabi
period must be at most of the order of the single-spin decoherence time T2.
For a Rabi period of 150 ns, we need a microwave field strength Bac of ∼1 mT.
If T2 is much longer, there is more time to coherently rotate the spin, so a
smaller oscillating field is sufficient.

We intend to generate the oscillating magnetic field by sending an alter-
nating current through an on-chip wire running close by the dot (Fig. 38a). If
the wire is placed well within one wavelength (which is a few mm at 30 GHz
near the surface of a GaAs substrate) from the quantum dot, the dot is in
the near-field region and the electric and magnetic field distribution produced
by the AC current should be the same as for a DC current [91]. With a wire
200 nm from the dot, a current of ∼1 mA should generate a magnetic field
of about 1 mT and no electric field at the position of the dot. To minimize

a b

Iac

B

B
ac

20 mµ500 nm

Fig. 38. On-chip wire to apply microwaves to a nearby quantum dot. The device
was made by Laurens Willems van Beveren and Jort Wever. (a) Scanning electron
microscope image of a device consisting of a double quantum dot in close proximity to
a gold wire. An AC current through the wire, Iac, generates an oscillating magnetic
field, Bac, perpendicular to the plane. If the AC frequency is resonant with the
Zeeman splitting due to a large static in-plane magnetic field, B, a spin on the dot
will rotate. (b) Large-scale view of the wire, designed to be a 50 Ω coplanar stripline
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reflection and radiation losses, the wire is designed to be a shorted coplanar
stripline (Fig. 38b) with a 50 Ω impedance.

To detect the electron spin resonance (ESR) and obtain a lower bound
on T2 from the linewidth of the resonance signal, various methods have
been proposed, either using transport measurements [92] or relying on charge
detection [93]. In both cases, the required spin-to-charge conversion is achieved
by positioning the dot levels around the Fermi energy of the reservoir
(Fig. 39a–b). The ESR-field induces spin flips, exciting | ↑〉 electrons to | ↓〉,
which can then tunnel out of the dot. This leads to an average current
(Fig. 39a) or to a change in the average occupation of the dot (Fig. 39b).
However, in this configuration the dot is particularly sensitive to spurious ef-
fects induced by the microwaves, such as | ↑〉 electrons being excited out of
the dot via thermal excitation or photon-assisted tunnelling. These processes
can completely obscure the spin resonance.

↑

↓

↑

↓ ↑

↓
c

↑

↓

da b c

~
k

T
B

Fig. 39. Detecting ESR. (a) To detect ESR in a transport measurement [92], the
dot is placed in Coulomb blockade, so that electron spins that are flipped by the ESR
field can contribute to a current. (b) A similar configuration is used to detect ESR
via changes in the occupation of the dot [90], measured using a charge detector. (c) If
the dot is deep in Coulomb blockade during the spin-flip stage, the electron is not
easily excited to the reservoir via thermal excitation or photon-assisted tunnelling.
(d) The microwaves are off during the spin read-out stage to enhance the measure-
ment fidelity

Such problems can be avoided by combining (pulsed) electron spin res-
onance with single-shot spin measurement. This allows us to separate the
spin manipulation stage (during which the microwaves are on) from the spin
read-out stage (without microwaves). In this way, excitation out of the dot
is prevented by Coulomb blockade (Fig. 39c), until spin read-out is initiated
(Fig. 39d). In contrast to the techniques described above – which require a
large spin flip rate to generate a measurable current or disturbance of the dot
occupation – this approach only requires the spin flip rate to be faster than
the decoherence rate. Therefore, a longer T2 allows us to use a smaller Bac,
corresponding to (quadratically) smaller microwave power. This should help
to suppress heating and photon-assisted tunnelling.

In principle, an ESR experiment can be performed in a parallel or a per-
pendicular magnetic field. The read-out in a perpendicular field is particularly
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suitable for ESR detection, as the dot levels are far above EF (so are not af-
fected by photon-assisted tunnelling or heating). If B is perpendicular to the
surface, Bac must run through the dot in a direction parallel to the surface,
so we must place the wire above the dot rather than to its side. The wire
could be located on top of an insulating dielectric layer that covers the gate
electrodes.

6.6 Coherent Spin Interactions:
√

swap

Two electron spins S1 and S2 in neighbouring quantum dots are coupled to
each other by the exchange interaction, which takes the form J(t)S1 · S2.
If the double dot is filled with two identical spins, the interaction does not
change their orientation. However, if the left electron spin starts out being | ↑〉
and the right one | ↓〉, then the states of the two spins will be swapped after
a certain time. An interaction active for half this time performs the

√
swap

gate, which has been shown to be universal for quantum computation when
combined with single qubit rotations [94]. In fact, the exchange interaction is
even universal by itself when the state of each qubit is encoded in the state
of three electron spins [17].

The strength J(t) of the exchange interaction depends on the overlap of
the two electron wavefunctions, which varies exponentially with the voltage
applied to the gate controlling the inter-dot tunnel barrier. By applying a
(positive) voltage pulse with a certain amplitude and duration, we can tem-
porarily turn on the exchange interaction, thereby performing a

√
swap gate.

We expect that J may correspond to a frequency of ∼10 GHz, so two-qubit
gates could be performed in ∼100 ps. A much larger value would not be con-
venient experimentally, as we would have to control the exact amplitude and
duration of the pulse very precisely. On the other hand, a very slow exchange
operation would be more sensitive to decoherence resulting from fluctuations
in the tunnel rate, due to charge noise. The value of J can in principle be de-
termined in a transport measurement [33], or alternatively by using the QPC
tunnel spectroscopy technique developed in Sect. 3. However, in practical sit-
uations J might be too small to be resolved.

To explore the operation of the swap gate, we only need reliable initial-
ization and read-out, without requiring ESR [2]. Imagine qubit 1 is prepared
in a pure state | ↑〉 and qubit 2 is prepared in a statistical mixture of | ↑〉 and
| ↓〉. Measurement of qubit 1 should then always give | ↑〉, while measurement
of qubit 2 should give probabilistically | ↑〉 or | ↓〉. After application of the
swap gate, in contrast, measurement of qubit 2 should always give | ↑〉, while
measurement of qubit 1 should give a probabilistic outcome. This and other
spin-interaction experiments are probably easiest in a parallel magnetic field,
where initialization to a statistical mixture is convenient. In addition, a large
perpendicular field shrinks the electron wavefunctions, lowering the tunnel
coupling and thus the exchange interaction between the two dots.
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6.7 Unresolved Issues

Several issues are not yet fully resolved, both experimentally and theoreti-
cally. One of these is the question of electron spin resonance in the reservoir.
There are indications that the g-factor in the dot is different from that in the
reservoir [95] (disregarding enhancement due to exchange interactions, which
are not relevant for a “global” excitation such as ESR). However, if the two g-
factors are equal, then any coherent operation of the spin on the dot will also
influence the spin population outside the dot. This has not been taken into
account in this section, but it could lead to complications for the proposed
ESR experiments.

Another question is related to the ∼106 nuclear spins in the quantum
dot that couple to the electron spin via the hyperfine coupling. Through the
Overhauser effect they produce an effective magnetic field, which can be very
large (∼5 T) for a fully polarized nuclear spin ensemble. Statistical fluctuations
in the Overhauser field could lead to changes in the phase of the electron spin.
It is not yet clear what the influence will be on spin manipulation experiments.
If it turns out to be a problem, we may have to polarize the nuclear system
completely in order to suppress the fluctuations.

A more practical consideration is the effect of charge switches in the het-
erostructure, which make any experiment more difficult. This is particularly
true for two-spin interaction experiments, as charge noise can affect the inter-
dot tunnel barrier and therefore the exchange interaction, resulting in deco-
herence. In collaboration with the group of Prof. Wegscheider in Regensburg,
we have started to investigate the possible origin of charge switching, in an
effort to produce more quiet heterostructures and devices.

Finally, so far we have used at most two quantum dots, not paying much
attention to the scalability of our spin qubit approach. For instance, the ESR-
field generated by the big wire runing next to the double dot will also influence
other spins in nearby dots. We may therfore have to develop techniques to
locally control the g-factor felt by the electron spin in a dot, in order to shift
particular dots in or out of resonance.

6.8 Conclusion and Outlook

In summary, we have demonstrated that single electrons trapped in GaAs
lateral quantum dots are promising candidates for implementing a spin qubit.
We have realized the “hardware” for such a system: a device consisting of
two coupled quantum dots that can be filled with one electron spin each,
flanked by two quantum point contacts. Using these QPCs as charge detectors,
we can determine all relevant parameters of the double dot. In addition, we
have developed a technique to measure the spin orientation of an individual

electron. Now we can proceed to combine all these ingredients with the ability
to generate strong microwave magnetic fields close to the dot, and gate voltage



92 J.M. Elzerman et al.

pulses to control the inter-dot coupling, in order to demonstrate superposition
and entanglement of spin states.

For such experiments, the QPC is an invaluable tool. It allows us to probe a
dot that is nearly isolated from the reservoirs, which is a regime not accessible
to conventional transport experiments. Most importantly, it enables us to
study a single spin or charge, rather than measuring average properties of a
large ensemble. The QPC charge and spin detector is therefore essential to
achieve the kind of single-particle control that is required for creating a qubit –
transport experiments are no longer necessary.

The techniques we have developed are not only suitable for quantum com-
putation. Now that the spin orientation of a single electroncan be measured,
we can think of using the spin as a local probe to explore the semiconductor
environment. For instance, measuring the spin relaxation time in various sit-
uations could reveal details of different mechanisms for spin-orbit coupling.
We could vary the orientation of the magnetic field with respect to the crystal
axes, or investigate the effect of static or time-varying electric fields. Once
we can measure the electron spin resonance frequency, this would allow us to
study the polarization of the nuclear spin ensemble via the Overhauser effect.
In all these cases, the fact that dot parameters such as the Zeeman splitting
or the tunnel coupling to reservoirs can be controlled in situ, makes a lat-
eral quantum dot filled with a single spin a system of great versatility and
fundamental importance.
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Summary. We review mechanisms of low-temperature electronic transport through
a quantum dot weakly coupled to two conducting leads. Transport in this case is
dominated by electron-electron interaction. At temperatures moderately lower than
the charging energy of the dot, the linear conductance is suppressed by the Coulomb
blockade. Upon further lowering of the temperature, however, the conductance may
start to increase again due to the Kondo effect. We concentrate on lateral quan-
tum dot systems and discuss the conductance in a broad temperature range, which
includes the Kondo regime.

1 Introduction

In quantum dot devices [1] a small droplet of electron liquid, or just a few
electrons are confined to a finite region of space. The dot can be attached by
tunneling junctions to massive electrodes to allow electronic transport across
the system. The conductance of such a device is determined by the number of
electrons on the dot N , which in turn is controlled by varying the potential
on the gate – an auxiliary electrode capacitively coupled to the dot [1]. At
sufficiently low temperatures N is an integer at almost any gate voltage Vg.
Exceptions are narrow intervals of Vg in which an addition of a single elec-
tron to the dot does not change much the electrostatic energy of the system.
Such a degeneracy between different charge states of the dot allows for an
activationless electron transfer through it, whereas for all other values of Vg

the activation energy for the conductance G across the dot is finite. The re-
sulting oscillatory dependence G(Vg) is the hallmark of the Coulomb blockade
phenomenon [1]. The contrast between the low- and high-conductance regions
(Coulomb blockade valleys and peaks, respectively) gets sharper at lower tem-
peratures. The pattern of periodic oscillations in the G vs. Vg dependence is
observed down to the lowest attainable temperatures in experiments on tun-
neling through small metallic islands [2].
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Conductance through quantum dots formed in semiconductor heterostruc-
tures exhibits a reacher behavior [1]. In larger dots (in the case of GaAs het-
erostructures, such dots may contain hundreds of electrons), the fluctuations
of the heights of the Coulomb blockade peaks become apparent already at
moderately low temperatures. Characteristic for mesoscopic phenomena, the
heights are sensitive to the shape of a dot and magnetic flux threading it.
The separation in gate voltage between the Coulomb blockade peaks, and
the conductance in the valleys also exhibit mesoscopic fluctuations. However,
the pattern of sharp conductance peaks separating the low-conductance val-
leys of the G(Vg) dependence persists. Smaller quantum dots (containing few
tens of electrons in the case of GaAs) show yet another feature [3]: in some
Coulomb blockade valleys the dependence G(T ) is not monotonic and has a
minimum at a finite temperature. This minimum is similar in origin [4] to
the well-known non-monotonic temperature dependence of the resistivity of
a metal containing magnetic impurities [5] – the Kondo effect. Typically, the
valleys with anomalous temperature dependence correspond to an odd num-
ber of electrons in the dot. In an ideal case, the low-temperature conductance
in such a valley is of the order of conductance at peaks surrounding it. Thus,
at low temperatures the two adjacent peaks merge to form a broad maximum.

The number of electrons on the dot is a well-defined quantity as long the
conductances of the junctions connecting the dot to the electrodes is small
compared to the conductance quantum e2/h. In quantum dot devices formed
in semiconductor heterostructures the conductances of junctions can be tuned
continuously. With the increase of the conductances, the periodic patern in
G(Vg) dependence gradually gives way to mesoscopic conductance fluctua-
tions. Yet, electron-electron interaction still affects the transport through the
device. A strongly asymmetric quantum dot device with one junction weakly
conducting, while another completely open, provides a good example of that.
The differential conductance across the device in this case exhibits zero-bias
anomaly – suppression at low bias. Clearly, Coulomb blockade is not an iso-
lated phenomenon, but is closely related to interaction-induced anomalies of
electronic transport and thermodynamics in higher dimensions [6].

The emphasis of these lectures is on the Kondo effect in quantum dots. We
will concentrate on the so-called lateral quantum dot systems [1, 3], formed
by gate depletion of a two-dimensional electron gas at the interface between
two semiconductors. These devices offer the highest degree of tunability, yet
allow for relatively simple theoretical treatment. At the same time, many
of the results presented below are directly applicable to other systems as
well, including vertical quantum dots [7, 8, 9], Coulomb-blockaded carbon
nanotubes [9, 10], single-molecule transistors [11], and stand-alone magnetic
atoms on metallic surfaces [12].

Kondo effect emerges at relatively low temperature, and we will follow the
evolution of the conductance upon the reduction of temperature. On the way
to Kondo effect, we encouter also the phenomena of Coulomb blockade and
of mesoscopic conductance fluctuations.
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2 Model of a Lateral Quantum Dot System

The Hamiltonian of interacting electrons confined to a quantum dot has the
following general form,

Hdot =
∑

s

∑

ij

hijd
†
isdjs +

1

2

∑

ss′

∑

ijkl

hijkld
†
isd

†
js′dks′dls . (1)

Here an operator d†is creates an electron with spin s in the orbital state
φi(r) (the wave functions are normalized according to

∫
drφ∗

i (r)φj (r) = δij);
hij = h∗

ji is an Hermitian matrix describing the single-particle part of the
Hamiltonian. The matrix elements hijkl depend on the potential U(r− r′) of
electron-electron interaction,

hijkl =

∫
dr dr′φ∗

i (r)φ
∗
j (r

′)U(r − r′)φk(r′)φl (r) . (2)

The Hamiltonian (1) can be simplified further provided that the quasipar-
ticle spectrum is not degenerate near the Fermi level, that the Fermi-liquid
theory is applicable to the description of the dot, and that the dot is in the
metallic conduction regime. The first of these conditions is satisfied if the dot
has no spatial symmetries, which implies also that motion of quasiparticles
within the dot is chaotic.

The second condition is met if the electron-electron interaction within the
dot is not too strong, i.e. the gas parameter rs is small,

rs = (kF a0)
−1 � 1 , a0 = κ�

2/e2m∗ (3)

Here kF is the Fermi wave vector, a0 is the effective Bohr radius, κ is the
dielectric constant of the material, and m∗ is the quasiparticle effective mass.

The third condition requires the ratio of the Thouless energy ET to the
mean single-particle level spacing δE to be large [13],

g = ET /δE ≫ 1 . (4)

For a ballistic two-dimensional dot of linear size L the Thouless energy ET is
of the order of �vF /L, whereas the level spacing can be estimated as

δE ∼ �vF kF /N ∼ �
2/m∗L2 . (5)

Here vF is the Fermi velocity and N ∼ (kF L)2 is the number of electrons in
the dot. Therefore,

g ∼ kF L ∼
√

N , (6)

so that having a large number of electrons N ≫ 1 in the dot guarantees that
the condition (4) is satisfied.

Under the conditions (3), (4) the Random Matrix Theory (for a review
see, e.g., [14, 15, 16, 17]) is a good starting point for description of non-
interacting quasiparticles within the energy strip of the width ET about the
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Fermi level [13]. The matrix elements hij in (1) belong to a Gaussian ensem-
ble [16, 17]. Since the matrix elements do not depend on spin, each eigenvalue
ǫn of the matrix hij represents a spin-degenerate energy level. The spacings
ǫn+1 − ǫn between consecutive levels obey the Wigner-Dyson statistics [16];
the mean level spacing 〈ǫn+1 − ǫn〉 = δE.

We discuss now the second term in the Hamiltonian (1), which describes
electron-electron interaction. It turns out [18, 19, 20] that the vast majority of
the matrix elements hijkl are small. Indeed, in the lowest order in 1/g ≪ 1, the
wave functions φi(r) are Gaussian random variables with zero mean, statisti-
cally independent of each other and of the corresponding energy levels [21]:

φ∗
i (r)φj (r

′) =
δij

A F (|r − r′|) , φi(r)φj(r′) =
δβ,1δij

A F (|r − r′|) . (7)

Here A ∼ L2 is the area of the dot, and the function F is given by

F (r) ∼ 〈exp(ik · r)〉FS . (8)

where 〈. . .〉FS stands for the averaging over the Fermi surface |k| = kF . In two
dimensions, the function F (r) decreases with r as F ∝ (kF r)−1/2 at kF r ≫ 1,
and saturates to F ∼ 1 at kF r ≪ 1.

The parameter β in (7) distinguishes between the presence (β = 1) or
absence (β = 2) of the time-reversal symmetry. The symmetry breaking is
driven by the orbital effect of the magnetic field and is characterised by the
parameter

χ = (Φ/Φ0)
√

g ,

where Φ is the magnetic flux threading the dot and Φ0 = hc/e is the flux
quantum, so that the limits χ ≪ 1 and χ ≫ 1 correspond to, respectively,
β = 1 and β = 2. Note that in the case of a magnetic field H⊥ applied
perpendicular to the plane of the dot, the crossover (at χ ∼ 1) between the
two regimes occurs at so weak field that the corresponding Zeeman energy B
is negligibly small1.

After averaging with the help of (7)–(8), the matrix elements (2) take the
form

hijkl = (2EC + ES/2) δilδjk + ESδikδjl + Λ (2/β − 1) δijδkl .

We substitute this expression into Hamiltonian (1), and rearrange the sum
over the spin indexes with the help of the identity

2 δs
1
s
2
δs′

1
s′

2
= δs

1
s′

1
δs′

2
s
2
+ σs

1
s′

1
· σs′

2
s
2

, (9)

where σ = (σx, σy, σz) are the Pauli matrices. This results in a remarkably
simple form [19, 20]

1 For example, in the experiments [22] the crossover takes place at H⊥ ∼ 10 mT .
Zeeman energy in such a field B ∼ 2.5 mK, which is by an order of magnitude
lower than the base temperture in the measurements.
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Hint = ECN̂2 − ESŜ2 + Λ (2/β − 1) T̂ †T̂ (10)

of the interaction part of the Hamiltonian of the dot. Here

N̂ =
∑

ns

d†nsdns , Ŝ =
∑

nss′

d†ns

σss′

2
dns′ T̂ =

∑

n

d†n↑d
†
n↓ (11)

are the operators of the total number of electrons in the dot, of the dot’s
spin, and the “pair creation” operator corresponding to the interaction in the
Cooper channel.

The first term in (10) represents the electrostatic energy. In the conven-
tional equivalent circuit picture, see Fig. 1, the charging energy EC is re-
lated to the total capacitance C of the dot, EC = e2/2C. For a mesoscopic
(kF L ≫ 1) conductor, the charging energy is large compared to the mean
level spacing δE. Indeed, using the estimates C ∼ κL and (3) and (5), we find

EC/δE ∼ L/a0 ∼ rs

√
N . (12)

Except an exotic case of an extremely weak interaction, this ratio is large
for N ≫ 1; for the smallest quantum dots formed in GaAs heterostructures,
EC/δE ∼ 10 [3]. Note that (4), (6), and (12) imply that

ET /EC ∼ 1/rs � 1 ,

which justifies the use of RMT for the description of single-particle states with
energies |ǫn| � EC , relevant for Coulomb blockade.

L Rdot

CL CR

Cg

VL Vg VR

GL GR

Fig. 1. Equivalent circuit for a quantum dot connected to two leads by tunnel
junctions and capacitively coupled to the gate electrode. The total capacitance of
the dot C = CL + CR + Cg

The second term in (10) describes the intra-dot exchange interaction, with
the exchange energy ES given by

ES =

∫
dr dr′U(r − r′)F 2(|r − r′|) (13)

In the case of a long-range interaction the potential U here should properly
account for the screening [20]. For rs ≪ 1 the exchange energy can be esti-
mated with logarithmic accuracy by substituting U(r) = (e2/κr)θ(a0−r) into
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(13) (here we took into account that the screening length in two dimensions
coincides with the Bohr radius a0), which yields

ES ∼ rs ln (1/rS) δE ≪ δE . (14)

The estimate (14) is valid only for rs ≪ 1. However, the ratio ES/δE remains
small for experimentally relevant2 value rs ∼ 1 as long as the Stoner criterion
for the absence of itinerant magnetism [23] is satisfied. This guarantees the
absence of a macroscopic (proportional to N) magnetization of a dot in the
ground state [19].

The third term in (10), representing interaction in the Cooper channel,
is renormalized by higher-order corrections arising due to virtual transitions
to states outside the energy strip of the width ET about the Fermi level.
For attractive interaction (Λ < 0) the renormalization enhances the interac-
tion, eventually leading to the superconducting instability and formation of a
gap ∆Λ in the electronic spectrum. Properties of very small (∆Λ ∼ δE) su-
perconducting grains are reviewed in, e.g., [24]; for properties of larger grains
(∆Λ ∼ EC) see [25]. Here we concentrate on the repulsive interaction (Λ > 0),
in which case Λ is very small,

Λ ∼ δE

ln(ǫF /ET )
∼ δE

lnN
≪ δE .

This estimate accounts for the logarithmic renormalization of Λ when the
high-energy cutoff is reduced from the Fermi energy ǫF down to the Thouless
energy ET [20]. In addition, if the time-reversal symmetry is lifted (β = 2)
then the third term in (10) is zero to start with. Accordingly, hereinafter we
neglect this term altogether by setting Λ = 0.

Obviously, the interaction part of the Hamiltonian (10), is invariant with
respect to a change of the basis of single-particle states φi(r). Picking up the
basis in which the first term in (1) is diagonal, we arrive at the universal

Hamiltonian [19, 20],

Hdot =
∑

ns

ǫnd†nsdns + EC

(
N̂ − N0

)2

− ESŜ2 . (15)

We included in (15) the effect of the capacitive coupling to the gate electrode:
the dimensionless parameter N0 is proportional to the gate voltage,

N0 = CgVg/e ,

where Cg is the capacitance between the dot and the gate, see Fig. 1. The
relative magnitude of fully off-diagonal interaction terms in (1) (corresponding

2 For GaAs (m∗ ≈ 0.07me, κ ≈ 13) the effective Bohr radius a0 ≈ 10 nm, whereas
a typical density of the two-dimensional electron gas, n ∼ 1011 cm−2 [3], corre-
sponds to kF =

√
2πn ∼ 106 cm−1. This gives kF a0 ∼ 1.
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to hijkl with all four indices different), not included in (15), is of the order of
1/g ∼ N−1/2 ≪ 1. Partially diagonal terms (two out of four indices coincide)
are larger, of the order of

√
1/g ∼ N−1/4, but still are assumed to be negligible

as N ≫ 1.
As discussed above, in this limit the energy scales involved in (15) form a

well-defined hierarchy
ES ≪ δE ≪ EC . (16)

If all the single-particle energy levels ǫn were equidistant, then the spin S of
an even-N state would be zero, while an odd-N state would have S = 1/2.
However, the level spacings are random. If the spacing between the highest
occupied level and the lowest unoccupied one is accidentally small, than the
gain in the exchange energy, associated with the formation of a higher-spin
state, may be sufficient to overcome the loss of the kinetic energy (cf. the
Hund’s rule in quantum mechanics). For ES ≪ δE such deviations from the
simple even-odd periodicity are rare [19, 26, 27]. This is why the last term
in (15) is often neglected. Equation (15) then reduces to the Hamiltonian of
the Constant Interaction Model, widely used in the analysis of experimental
data [1]. Finally, it should be emphasized that SU(2)–invariant Hamiltonian
(15) describes a dot in the absence of the spin-orbit interaction, which would
destroy this symmetry.

Electron transport through the dot occurs via two dot-lead junctions. In a
typical geometry, the potential forming a lateral quantum dot varies smoothly
on the scale of the Fermi wavelength, see Fig. 2. Hence, the point contacts con-
necting the quantum dot to the leads act essentially as electronic waveguides.
Potentials on the gates control the waveguide width, and, therefore, the num-
ber of electronic modes the waveguide support: by making the waveguide
narrower one pinches the propagating modes off one-by-one. Each such mode
contributes 2e2/h to the conductance of a contact. The Coulomb blockade
develops when the conductances of the contacts are small compared to 2e2/h,
i.e. when the very last propagating mode approaches its pinch-off [28, 29]. Ac-
cordingly, in the Coulomb blockade regime each dot-lead junction in a lateral
quantum dot system supports only a single electronic mode [30].

Fig. 2. The confining potential forming a lateral quantum dot varies smoothly on the
scale of the de Broglie wavelength at the Fermi energy. Hence, the dot-lead junctions
act essentially as electronic waveguides with a well-defined number of propagating
modes
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As discussed below, for EC ≫ δE the characteristic energy scale relevant
to the Kondo effect, the Kondo temperature TK , is small compared to the
mean level spacing: TK ≪ δE. This separation of the energy scales allows us
to simplify the problem even further by assuming that the conductances of the
dot-lead junctions are small. This assumption will not affect the properties of
the system in the Kondo regime. At the same time, it justifies the use of the
tunneling Hamiltonian for description of the coupling between the dot and
the leads. The microscopic Hamiltonian of the system can then be written as
a sum of three distinct terms,

H = Hleads + Hdot + Htunneling , (17)

which describe free electrons in the leads, isolated quantum dot, and tunnel-
ing between the dot and the leads, respectively. The second term in (17), the
Hamiltonian of the dot Hdot, is given by (15). We treat the leads as reser-
voirs of free electrons with continuous spectra ξk, characterized by constant
density of states ν, same for both leads. Moreover, since the typical energies
ω � EC of electrons participating in transport through a quantum dot in the
Coulomb blockade regime are small compared to the Fermi energy of the elec-
tron gas in the leads, the spectra ξk can be linearized near the Fermi level, ξk =
vF k; here k is measured from kF . With only one electronic mode per junction
taken into account, the first and the third terms in (17) have the form

Hleads =
∑

αks

ξkc†αkscαks, ξk = −ξ−k, (18)

Htunneling =
∑

αkns

tαn c†αksdns + H.c. (19)

Here tαn are tunneling matrix elements (tunneling amplitudes) “connecting”
the state n in the dot with the state k in the lead α (α = R,L for the right/left
lead).

Tunneling leads to a broadening of discrete levels in the dot. The width
Γαn that level n acquires due to escape of an electron to lead α is given by

Γαn = πν
∣∣t2αn

∣∣ (20)

Randomness of single-particle states in the dot translates into the randomness
of the tunneling amplitudes. Indeed, the amplitudes depend on the values of
the electron wave functions at the points rα of the contacts, tαn ∝ φn(rα). For
kF |rL − rR| ∼ kF L ≫ 1 the tunneling amplitudes [and, therefore, the widths
(20)] in the left and right junctions are statistically independent of each other.
Morover, the amplitudes to different energy levels are also uncorrelated, see
(7):

t∗αn tα′n′ =
Γα

πν
δαα′δnn′ , tαn tα′n′ =

Γα

πν
δβ,1δαα′δnn′ , (21)

The average value Γα = Γαn of the width is related to the conductance of the
corresponding dot-lead junction
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Gα =
4e2

�

Γα

δE
. (22)

In the regime of strong Coulomb blockade (Gα ≪ e2/h), the widths are small
compared to the level spacing, Γα ≪ δE, so that discrete levels in the dot
are well defined. Note that statistical fluctuations of the widths Γαn are large,
and the corresponding distribution function is not Gaussian. Indeed, using
(20) and (21) it is straightforward [16, 17] to show that

P (γ) = δ (γ − Γαn/Γα) =





e−γ/2

√
2πγ

, β = 1

e−γ , β = 2

(23)

This expression is known as Porter-Thomas distribution [31].

3 Thermally-Activated Conduction

At high temperatures, T ≫ EC , charging energy is negligible compared to the
thermal energy of electrons. Therefore the conductance of the device in this
regime G∞ is not affected by charging and, independently of the gate voltage,
is given by

1

G∞
=

1

GL
+

1

GR
. (24)

Dependence on N0 develops at lower temperatures, T � EC . It turns out
that the conductance is suppressed for all gate voltages except narrow regions
(Coulomb blockade peaks) around half-integer values of N0. We will demon-
strate this now using the method of rate [32, 33].

3.1 Onset of the Coulomb Blockade Oscillations

We start with the regime of relatively high temperatures,

δE ≪ T ≪ EC , (25)

and assume that the gate voltage is tuned sufficiently close to one of the points
of charge degeneracy,

|N0 − N∗
0 | � T/EC (26)

(here N∗
0 is a half-integer number).

Condition (25) enables us to treat the discrete single-particle levels within
the dot as a continuum with the density of states 1/δE. Condition (26), on the
other hand, allows us to take into account only two charge states of the dot
which are almost degenerate in the vicinity of the Coulomb blockade peak.
For N0 close to N∗

0 these are the state |0〉 with N = N∗
0 − 1/2 electrons on
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the dot, and the state |1〉 with N = N∗
0 +1/2 electrons. According to (15) and

(26), the difference of electrostatic energies of these states (the energy cost to
add an electron to the dot) is

E+(N0) = E|1〉 − E|0〉 = 2EC(N∗
0 − N0) � T . (27)

In addition to the constraints (25) and (26), we assume here that the
inelastic electron relaxation rate within the dot 1/τǫ is large compared to
the escape rates Γα/�. In other words, transitions between discrete levels
in the dot occur before the electron escapes to the leads3. Under this assump-
tion the tunnelings across the two junctions can be treated independently of
each other (this is known as sequential tunneling approximation).

With the help of the Fermi golden rule the current Iα from the lead α into
the dot can be written as

Iα = e
2π

�

∑

kns

∣∣t2αn

∣∣ δ(ξk + eVα − ǫn − E+) (28)

× {P0f(ξk)[1 − f(ǫn)] − P1f(ǫn)[1 − f(ξk)]} .

Here Pi is the probabilitiy to find the dot in the charge states |i〉 (i = 0, 1),
f(ω) = [exp(ω/T )+1]−1 is the Fermi function, and Vα is the electric potential
on the lead α, see Fig. 1. In writing (28) we assumed that the distribution
functions f(ξk) and f(ǫn) are not perturbed. This is well justified provided
that the relaxation rate 1/τǫ exceeds the rate ∼ G∞|VL − VR|/e at which
electrons pass through the dot. Replacing the summations over n and k in
(28) by integrations over the corresponding continua, and making use of (20)
and (22), we find

Iα =
Gα

e
[P0F (E+ − eVα) − P1F (eVα − E+)] , F (ω) =

ω

eω/T − 1
. (29)

In the steady state, the currents across the two junctions satisfy

I = IL = −IR . (30)

Equations (29) and (30), supplemented by the obvious normalization condition
P0 +P1 = 1, allow one to find the probabilities Pi and the current across the
dot I in response to the applied bias V = VL − VR. This yields for the linear
conductance across the dot [32]

G = lim
V →0

dI/dV = G∞
EC(N0 − N∗

0 )/T

sinh[2EC(N0 − N∗
0 )/T ]

. (31)

Here N0 = N∗
0 corresponds to the Coulomb blockade peak. At each peak,

the conductance equals half of its high-temperature value G∞, see (24). On

3 Note that a finite inelastic relaxation rate requires inclusion of mechanisms beyond
the model (15), e.g., electron-phonon collisions.
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the contrary, in the Coulomb blockade valleys (N0 �= N∗
0 ), the conductance

falls off exponentially with the decrease of temperature, and all the valleys
behave exactly the same way. Note that the sequential tunneling approxi-
mation disregards any interference phenomena for electrons passing the dot.
Accordingly, the result (31) is insensitive to a weak magnetic field.

3.2 Coulomb Blockade Peaks at Low Temperature

At temperatures below the single-particle level spacing in the dot δE, the acti-
vation energy for electron transport equals the difference between the ground
state energies of the Hamiltonian (15) corresponding to two subsequent (in-
teger) eigenvalues of N . Obviously, this difference includes, in addition to the
electrostatic contribution E+(N0), see (27), also a finite (and random) level
spacing. As a result, the distance in N0 between adjacent Coulomb blockade
peaks is no longer 1, but contains a small fluctuating contribution of the or-
der of δE/EC . Mesoscopic fluctuations of spacings between the peaks are still
subject of a significant disagreement between theory and experiments. We will
not consider these fluctuations here (see [15] for a recent review), and discuss
only the heights of the peaks.

We concentrate on the temperature interval

Γα ≪ T ≪ δE , (32)

which extends to lower temperatures the regime considered in the previous
section, see (25), and on the gate voltages tuned to the vicinity of the Coulomb
blockade peak, see (26). Just as above, the latter condition allows us to neglect
all charge states except the two with the lowest energy, |0〉 and |1〉. Due to
the second inequality in (32), the thermal broadening of single-particle energy
levels in the dot can be neglected, and the states |0〉 and |1〉 coincide with the
ground states of the Hamiltonian (15) with, respectively, N = N∗

0 − 1/2 and
N = N∗

0 + 1/2 electrons in the dot. To be definite, consider the case when

N∗
0 = N + 1/2 (33)

with N being an even integer; for simplicity, we also neglect the exchange term
in (15). Then |0〉 (with even number of electrons N) is the state in which all
single particle levels below the Fermi level (n < 0) are doubly occupied. This
state is, obviously, non-degenerate. The state |1〉 differs from |0〉 by an addition
of a single electron on the Fermi level n = 0. The extra electron may be in
two possible spin states, hence |1〉 is doubly degenerate; we denote the two
components of |1〉 by |s〉 with s =↑, ↓. As discussed below, the degeneracy
eventually gives rise to the Kondo effect. However, at T ≫ Γα [see (32)]
the quantum coherence associated with the onset of the Kondo effect is not
important, and the rate equations approach can still be used to study the
transport across the dot [33].
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Applying the Fermi golden rule, we write the contribution of electrons with
spin s to the electric current Iαs from lead α to the dot as

Iαs = e
2π

�

∣∣t2α0

∣∣∑

k

δ (ξk + eVα − ǫ0 − E+)
{
P0f(ξk) − Ps [1 − f(ξk)]

}

We now neglect ǫ0 as it is small compared to E+ (thereby neglecting the
mesoscopic fluctuations of the position of the Coulomb blockade peak) and
replace the summation over k by an integration. This yields

Iαs =
2e

�
Γα0

{
P0f (E+ − eVα) − Psf (eVα − E+)

}
. (34)

In the steady state the currents Iαs satisfy

ILs = −IRs = I/2 (35)

(here we took into account that both projections of spin contribute equally to
the total electric current across the dot I). Solution of (34) and (35) subject
to the normalization condition P0 + P↑ + P↓ = 1 results in [20]

G =
4e2

�

ΓL0ΓR0

ΓL0 + ΓR0

[ −df/dω

1 + f(ω)

]

ω=E+(N0)

. (36)

The case of odd N in (33) is also described by (36) after replacement
E+(N0) → −E+(N0).

There are several differences between (36) and the corresponding expres-
sion (31) valid in the temperature range (25). First of all, the maximum of
the conductance (36) occurs at the gate voltage slightly (by an amount of the
order of T/EC) off the degeneracy point N0 = N∗

0 , and, more importantly,
the shape of the peak is not symmetric about the maximum. This asymmetry
is due to correlations in transport of electrons with opposite spins through a
single discrete level in the dot. In the maximum, the function (36) takes value

Gpeak ∼ e2

h

ΓL0ΓR0

ΓL0 + ΓR0

1

T
. (37)

Note that (36) and (37) depend on the widths Γα0 of the energy level
n = 0 rather then on the averages Γα over many levels in the dot, as in
(31). As already discussed in Sect. 2, the widths Γα0 are related to the values
of the electron wave functions at the position of the dot-lead contacts, and,
therefore, are random. Accordingly, the heights Gpeak of the Coulomb blockade
peaks exhibit strong mesoscopic fluctuations. In view of (23), the distribution
function of Gpeak, see (37), is expected to be broad and strongly non-Gaussian,
as well as very sensitive to the magnetic flux threading the dot. This is indeed
confirmed by calculations [34, 35] and agrees with experimental data [22, 36].
The expression for the distribution function is rather combersome and we will
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not reproduce it here, referring the reader to the original papers [34, 35] and
reviews [15, 17, 20]) instead.

An order-of-magnitude estimate of the average height of the peak can be
obtained by replacing Γα0 in (37) by Γα, see (22), which yields

Gpeak ∼ G∞
δE

T
. (38)

This is by a factor δE/T larger than the corresponding figure Gpeak = G∞/2
for the temperature range (25), and may even approach the unitary limit
(∼e2/h) at the lower end of the temperature interval (32). Interestingly, break-
ing of time-reversal symmetry results in an increase of the average conduc-
tance [20]. This increase is analogous to negative magnetoresistance due to
weak localization in bulk systems [37], with the same physics involved.

4 Activationless Transport

through a Blockaded Quantum Dot

According to the rate equations theory [32], at low temperatures, T ≪ EC ,
conduction through the dot is exponentially suppressed in the Coulomb
blockade valleys. This suppression occurs because the process of electron trans-
port through the dot involves a real transition to the state in which the charge
of the dot differs by e from the thermodynamically most probable value. The
probability of such fluctuation is proportional to exp (−EC |N0 − N∗

0 |/T ),
which explains the conductance suppression, see (30). Going beyond the
lowest-order perturbation theory in conductances of the dot-leads junctions
Gα allows one to consider processes in which states of the dot with a “wrong”
charge participate in the tunneling process as virtual states. The existence of
these higher-order contributions to the tunneling conductance was envisioned
already in 1968 by Giaever and Zeller [38]. The first quantitative theory of
this effect, however, was developed much later [39].

The leading contributions to the activationless transport, according to [39],
are provided by the processes of inelastic and elastic co-tunneling. Unlike the
sequential tunneling, in the co-tunneling mechanism, the events of electron
tunneling from one of the leads into the dot, and tunneling from the dot to
the other lead occur as a single quantum process.

4.1 Inelastic Co-Tunneling

In the inelastic co-tunneling mechanism, an electron tunnels from a lead into
one of the vacant single-particle levels in the dot, while it is an electron occu-
pying some other level that tunnels out of the dot, see Fig. 3(a). As a result,
transfer of charge e between the leads is accompanied by a simultaneous cre-
ation of an electron-hole pair in the dot.
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ǫF

(a) (b) (c)

EC

δE

Fig. 3. Examples of the co-tunneling processes. (a) Inelastic co-tunneling: transfer-
ring of an electron between the leads leaves behind an electron-hole pair in the dot;
(b) elastic co-tunneling; (c) elastic co-tunneling with a flip of spin

Here we will estimate the contribution of the inelastic co-tunneling to the
conductance deep in the Coulomb blockade valley, i.e. at almost integer N0.
Consider an electron that tunnels into the dot from the lead L. If energy ω
of the electron relative to the Fermi level is small compared to the charging
energy, ω ≪ EC , then the energy of the virtual state involved in the co-
tunneling process is close to EC . The amplitude Ain of the inelastic transition
via this virtual state to the lead R is then given by

Ain =
t∗Ln tRn′

EC
. (39)

The initial state of this transition has an extra electron in the single-particle
state k in the lead L, while the final state has an extra electron in the state k′

in the lead R and an electron-hole pair in the dot (state n is occupied, state
n′ is empty).

Given the energy of the initial state ω, the number of available final states
can be estimated from the phase space argument, familiar from the calculation
of the quasiparticle lifetime in the Fermi liquid theory [40]. For ω ≫ δE this
number is of the order of (ω/δE)2. Since the typical value of ω is T , the
inelastic co-tunneling contribution to the conductance can be estimated as

Gin ∼ e2

h

(
T

δE

)2

ν2 |A2
in| .

Using now (20) and (22), we find [39]

Gin ∼ GLGR

e2/h

(
T

EC

)2

. (40)

A comparison of (40) with the result of the rate equations theory (31) shows
that the inelastic co-tunneling takes over the thermally-activated hopping at
moderately low temperatures

T � Tin = EC

[
ln

(
e2/h

GL + GR

)]−1

. (41)
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The smallest energy of the electron-hole pair is of the order of δE. At
temperatures below this threshold the inelastic co-tunneling contribution to
the conductance becomes exponentially small. It turns out, however, that even
at much higher temperatures this mechanism becomes less effective than the
elastic co-tunneling.

4.2 Elastic Co-Tunneling

In the process of elastic co-tunneling, transfer of charge between the leads
is not accompanied by the creation of an electron-hole pair in the dot. In
other words, occupation numbers of single-particle energy levels in the dot in
the initial and final states of the co-tunneling process are exactly the same,
see Fig. 3(b). Close to the middle of the Coulomb blockade valley (at almost
integer N0) the average number of electrons on the dot, N ≈ N0, is also
an integer. Both an addition and a removal of a single electron cost EC in
electrostatic energy, see (15). The amplitude of the elastic co-tunneling process
in which an electron is transfered from lead L to lead R can then be written
as

Ael =
∑

n

t∗LntRn

sign(ǫn)

EC + |ǫn|
(42)

The two types of contributions to the amplitude Ael are associated with virtual
creation of either an electron if the level n is empty (ǫn > 0), or of a hole if
the level is occupied (ǫn < 0); the relative sign difference between the two
types of contributions originates in the fermionic commutation relations.

As discussed in Sect. 2, the tunneling amplitudes tαn entering (42) are
Gaussian random variables with zero mean and variances given by (21). It is
then easy to see that the second moment of the amplitude (42) is given by

|A2
el| =

ΓLΓR

(πν)2

∑

n

(EC + |ǫn|)−2
.

Since for EC ≫ δE the number of terms making significant contribution to
the sum over n here is large, and since the sum is converging, one can replace
the summation by an integral which yields

|A2
el| ≈

ΓLΓR

(πν)2
1

ECδE
. (43)

Substitution of this expression into

Gel =
4πe2ν2

�

∣∣A2
el

∣∣ (44)

and making use of (22) gives [39]

Gel ∼
GLGR

e2/h

δE

EC
. (45)
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for the average value of the elastic co-tunneling contribution to the conduc-
tance.

This result is easily generalized to gate voltages tuned away from the
middle of the Coulomb blockade valley. The corresponding expression reads

Gel ∼
GLGR

e2/h

δE

EC

(
1

N0 − N∗
0

+
1

N∗
0 − N0 + 1

)
. (46)

and is valid when N0 is not too close to the degeneracy points N0 = N∗
0 and

N0 = N∗
0 + 1 (N∗

0 is a half-integer number):

min
{
|N0 − N∗

0 | , |N0 − N∗
0 − 1|

}
≫ δE/EC

Comparison of (45) with (40) shows that the elastic co-tunneling mecha-
nism dominates the electron transport already at temperatures

T � Tel =
√

ECδE , (47)

which may exceed significantly the level spacing. However, as we will see
shortly below, mesoscopic fluctuations of Gel are strong [41], of the order of
its average value. Thus, although Gel is always positive, see (46), the sample-
specific value of Gel for a given gate voltage may vanish.

The key to understanding the statistical properties of the elastic co-
tunneling contribution to the conductance is provided by the observation that
there are many (∼EC/δE ≫ 1) terms making significant contribution to the
amplitude (42). All these terms are random and statisticaly independent of
each other. The central limit theorem then suggests that the distribution of
Ael is Gaussian [20], and, therefore, is completely characterised by the first
two statistical moments,

Ael = A∗
el, AelAel = A∗

elA
∗
el = δβ,1 AelA

∗
el (48)

with A∗
elAel given by (43). This can be proven by explicit consideration of

higher moments. For example,

|A4
el| = 2

(
AelA

∗
el

)2
+
∣∣AelAel

∣∣2 + δ |A4
el| . (49)

The non-Gaussian correction here, δ |A4
el| ∼ |A2

el| (δE/EC), is by a factor of
δE/EC ≪ 1 smaller than the main (Gaussian) contribution.

It follows from (44), (48), and (49) that the fluctuation of the conductance
δGel = Gel − Gel satisfies

δG2
el =

2

β

(
Gel

)2
. (50)

Note that breaking of time reversal symmetry reduces the fluctuations by a
factor of 2, similar to conductance fluctuations in bulk systems, whereas the
average conductance (46) is not affected by the magnetic field.
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It is clear from (50) that the fluctuations of the conductance are of the
order of the conductance itself, despite naive expectations that the large num-
ber of the contributing states results in self-averaging. The reason is that one
has to add amplitudes, rather than probabilities, in order to compute the
conductance. Because the fluctuations of the conductance are large, its distri-
bution function is not Gaussian. Given the statistics (48) of the amplitudes,
it is not quite surprising that the distribution of Gel normalized to its average
coincides with Porter-Thomas distribution (23). This result was obtained first
in [41] by a different (and more general) method.

Finally, it is interesting to compare the elastic co-tunneling contribution
to the conductance fluctuations with that of inelastic co-tunneling [41],

δG2
in ∼ G2

in

δE

T

with Gin given by (40). Even though the inelastic co-tunneling is the main
conduction mechanism at T � Tel, see (47), elastic co-tunneling continues to
dominate the fluctuations as long as T � Tel(EC/δE)1/6.

5 Kondo Regime in Transport through a Quantum Dot

In the above discussion of the elastic co-tunneling we made a tacit assumption
that all single-particle levels in the dot are either empty or doubly occupied.
This, however, is not the case when the dot has a non-zero spin in the ground
state. A dot with odd number of electrons, for example, would necessarily have
a half-integer spin S. In the most important case of S = 1/2 the top-most oc-
cupied single-particle level is filled by a single electron and is spin-degenerate.
This opens a possibility of a co-tunneling process in which a transfer of an
electron between the leads is accompanied by a flip of electron’s spin with
simultaneous flip of the spin on the dot, see Fig. 3(c).

The amplitude of such a process, calculated in the fourth order in tun-
neling matrix elements, diverges logarithmically when the energy ω of an in-
coming electron approaches 0. Since ω ∼ T , the logarithmic singularity in the
transmission amplitude translates into a dramatic enhancement of the con-
ductance G across the dot at low temperatures: G may reach values as high
as the quantum limit 2e2/h [42, 43]. This conductance enhancement is not
really a surprise. Indeed, in the spin-flip co-tunneling process a quantum dot
with odd N behaves as S = 1/2 magnetic impurity embedded into a tunneling
barrier separating two massive conductors [44]. It is known [45] since mid-60’s
that the presence of such impurities leads to zero-bias anomalies in tunneling
conductance [46], which are adequately explained [47, 48] in the context of
the Kondo effect [5].
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5.1 Effective Low-Energy Hamiltonian

At energies well below the threshold ∆ ∼ δE for intradot excitations the
transitions within the (2S +1)-fold degenerate ground state manifold of a dot
can be conveniently described by a spin operator S. The form of the effective

Hamiltonian describing the interaction of the dot with conduction electrons
in the leads is then dictated by SU(2) symmetry4,

Heff =
∑

αks

ξkc†αkscαks +
∑

αα′

Jαα′(sα′α · S) (51)

with sαα′ =
∑

kk′ss′ c†αks(σss′/2) cα′k′s′ . The sum over k in (51) is restricted to

|ξk| < ∆. The exchange amplitudes Jαα′ form 2× 2 Hermitian matrix Ĵ . The
matrix has two real eigenvalues, the exchange constants J1 and J2 (hereafter
we assume that J1 ≥ J2) By an appropriate rotation in the R − L space the
Hamiltonian (52) can then be brought into the form

Heff =
∑

γks

ξkψ†
γksψγks +

∑

γ

Jγ(sγ · S) . (52)

Here the operators ψγ are certain linear combinations of the original operators
cR,L describing electrons in the leads, and

sγ =
∑

kk′ss′

ψ†
γks

σss′

2
ψγk′s′

is local spin density of itinerant electrons in the “channel” γ = 1, 2.
The symmetry alone is not sufficient to determine the exchange constants

Jγ ; their evaluation must rely upon a microscopic model. Here we breifly
outline the derivation [30, 49, 50] of (51) for a generic model of a quantum
dot system discussed in Sect. 2 above. For simplicity, we will assume that
the gate voltage N0 is tuned to the middle of the Coulomb blockade valley.
The tunneling (19) mixes the state with N = N0 electrons on the dot with
states having N ± 1 electrons. The electrostatic energies of these states are
high (∼EC), hence the transitions N → N ± 1 are virtual, and can be taken
into account perturbatively in the second order in tunneling amplitudes [51].

For the Hamiltonian (15) the occupations of single-particle energy levels
are good quantum numbers. Therefore, the amplitude Jαα′ can be written as
a sum of partial amplitudes,

Jαα′ =
∑

n

Jn
αα′ . (53)

4 In writing (51) we omitted the potential scattering terms associated with the usual
elastic co-tunneling. This approximation is well justified when the conductances
of the dot-lead junctions are small, Gα ≪ e2/h, in which case Gel is also very
small, see (43)
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Each term in the sum here corresponds to a process during which an electron
or a hole is created virtually on the level n in the dot, cf. (42). For Gα ≪ e2/h
and ES ≪ δE the main contribution to the sum in (53) comes from singly-
occupied energy levels in the dot. A dot with spin S has 2S such levels near the
Fermi level (hereafter we assign indexes n = −S, . . . , n = S to these levels),
each carrying a spin S/2S, and contributing

Jn
αα′ =

λn

EC
t∗αntα′n , λn = 2/S, |n| ≤ S (54)

to the exchange amplitude in (51). This yields

Jαα′ ≈
∑

|n|≤S

Jn
αα′ . (55)

It follows from (53) and (54) that

trĴ =
1

EC

∑

n

λn

(
|t2Ln| + |t2Rn|

)
. (56)

By restricting the sum over n here to |n| ≤ S, as in (55), and taking into
account that all λn in (54) are positive, we find J1 + J2 > 0. Similarly, from

det Ĵ =
1

2E2
C

∑

m,n

λmλn|D2
mn| , Dmn = det

(
tLm tRm

tLn tRn

)
(57)

and (54) and (55) follows that J1J2 > 0 for S > 1/2. Indeed, in this case
the sum in (57) contains at least one contribution with m �= n; all such
contributions are positive. Thus, both exchange constants J1,2 > 0 if the
dot’s spin S exceeds 1/2 [30]. The pecularities of the Kondo effect in quantum
dots with large spin are discussed in [30, 50].

Here we concentrate on the most common situation of S = 1/2 on the
dot [3]. The ground state of such dot has only one singly-occupied energy
level (n = 0), so that det Ĵ ≈ 0, see (55) and (57). Accordingly, one of the
exchange constants vanishes,

J2 ≈ 0 , (58)

while the remaining one, J1 = trĴ , is positive. Equation (58) resulted, of
course, from the approximation made in (55). For the model (15) the leading
correction to (55) originates in the co-tunneling processes with an intermedi-
ate state containing an extra electron (or an extra hole) on one of the empty
(doubly-occupied) levels. Such contribution arises because the spin on the level
n is not conserved by the Hamiltonian (15), unlike the corresponding occupa-
tion number. Straightforward calculation [49] yields the partial amplitude in
the form of (54), but with

λn = − 2ECES

(EC + |ǫn|)2
, n �= 0 .
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Unless the tunneling amplitudes tα0 to the only singly-occupied level in
the dot are anomalously small, the corresponding correction

δJαα′ =
∑

n =0

Jn
αα′ (59)

to the exchange amplitude (55) is small,

∣∣∣∣
δJαα′

Jαα′

∣∣∣∣ ∼
ES

δE
≪ 1 ,

see (16). To obtain this estimate, we assumed that all tunneling amplitudes
tαn are of the same order of magnitude, and replaced the sum over n in (59)
by an integral. A similar estimate yields the leading contribution to det Ĵ ,

det Ĵ ≈ 1

E2
C

∑

n

λ0λn|D2
0n| ∼ −ES

δE

(
trĴ

)2

,

or
J2/J1 ∼ −ES/δE . (60)

According to (60), the exchange constant J2 is negative [52], and its ab-
solute value is small compared to J1. Hence (58) is indeed an excellent approx-
imation for large chaotic dots with spin S = 1/2 as long as the intradot ex-
change interaction remains weak, ES ≪ δE5. Note that corrections to the uni-
versal Hamiltonian (15) also result in finite values of both exchange constants,
|J2| ∼ J1N

−1/2, and become important for small dots with N � 10 [43]. Al-
though this may significantly affect the conductance across the system in the
weak coupling regime T � TK , it does not lead to qualitative changes in the
results for S = 1/2 on the dot, as the channel with smaller exchange constant
decouples at low energies [54]. With this caveat, we adopt the approxima-
tion (58) in our description of the Kondo effect in quantum dots with spin
S = 1/2. Accordingly, the effective Hamiltonian of the system (52) assumes
the“block-diagonal” form

Heff = H1 + H2 (61)

H1 =
∑

ks

ξkψ†
1ksψ1ks + J(s1 · S) (62)

H2 =
∑

ks

ξkψ†
2ksψ2ks (63)

with J = trĴ > 0.

5 Equation (58) holds identically for the Anderson impurity model [48] frequently
employed to study transport through quantum dots [42, 53]. In that model a
quantum dot is described by a single energy level, which formally corresponds to
the infinite level spacing limit δE → ∞ of the Hamiltonian (15).
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To get an idea about the physics of the Kondo model (see [55] for recent
reviews), let us first replace the fermion field operator s1 in (62) by a single-
particle spin-1/2 operator S1. The ground state of the resulting Hamiltonian
of two spins

H̃ = J(S1 · S)

is obviously a singlet. The excited state (a triplet) is separated from the ground
state by the energy gap J1. This separation can be interpreted as the binding
energy of the singlet. Unlike S1 in this simple example, the operator s1 in (62)
is merely a spin density of the conduction electrons at the site of the “magnetic
impurity”. Because conduction electrons are freely moving in space, it is hard
for the impurity to “capture” an electron and form a singlet. Yet, even a weak
local exchange interaction suffices to form a singlet ground state [56, 57].
However, the characteristic energy (an analogue of the binding energy) for
this singlet is given not by the exchange constant J , but by the so-called
Kondo temperature

TK ∼ ∆ exp(−1/νJ) . (64)

Using ∆ ∼ δE and (56) and (22), one obtains from (64) the estimate

ln

(
δE

TK

)
∼ 1

νJ
∼ e2/h

GL + GR

EC

δE
. (65)

Since Gα ≪ e2/h and EC ≫ δE, the r.h.s. of (65) is a product of two large
parameters. Therefore, the Kondo temperature TK is small compared to the
mean level spacing,

TK ≪ δE . (66)

It is this separation of the energy scales that justifies the use of the effective
low-energy Hamiltonian (51), (52) for the description of the Kondo effect in
a quantum dot system. The inequality (66) remains valid even if the conduc-
tances of the dot-leads junctions Gα are of the order of 2e2/h. However, in
this case the estimate (65) is no longer applicable [58].

In our model, see (61)–(63), one of the channels (ψ2) of conduction elec-
trons completely decouples from the dot, while the ψ1-particles are described
by the standard single-channel antiferromagnetic Kondo model [5, 55]. There-
fore, the thermodynamic properties of a quantum dot in the Kondo regime
are identical to those of the conventional Kondo problem for a single magnetic
impurity in a bulk metal; thermodynamics of the latter model is fully stud-
ied [59]. However, all the experiments addressing the Kondo effect in quantum
dots test their transport properties rather then thermodynamics. The electron
current operator is not diagonal in the (ψ1, ψ2) representation, and the contri-
butions of these two sub-systems to the conductance are not additive. Below
we relate the linear conductance and, in some special case, the non-linear
differential conductance as well, to the t-matrix of the conventional Kondo
problem.
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5.2 Linear Response

The linear conductance can be calculated from the Kubo formula

G = lim
ω→0

1

� ω

∫ ∞

0

dt eiωt
〈[

Î(t), Î(0)
]〉

, (67)

where the current operator Î is given by

Î =
d

dt

e

2

(
N̂R − N̂L

)
, N̂α =

∑

ks

c†αkscαks (68)

Here N̂α is the operator of the total number of electrons in the lead α. Evalua-
tion of the linear conductance proceeds similarly to the calculation of the im-
purity contribution to the resistivity of dilute magnetic alloys (see, e.g., [60]).
In order to take the full advantage of the decomposition (61)–(63), we rewrite
Î in terms of the operators ψ1,2. These operators are related to the original
operators cR,L representing the electrons in the right and left leads via

(
ψ1ks

ψ2ks

)
=

(
cos θ0 sin θ0

− sin θ0 cos θ0

)(
cRks

cLks

)
. (69)

The rotation matrix here is the same one that diagonalizes matrix Ĵ of
the exchange amplitudes in (51); the rotation angle θ0 satisfies the equation
tan θ0 = |tL0/tR0|. With the help of (69) we obtain

N̂R − N̂L = cos(2θ0)
(
N̂1 − N̂2

)
− sin(2θ0)

∑

ks

(
ψ†

1ksψ2ks + H.c.
)

(70)

The current operator Î entering the Kubo formula (67) is to be calculated
with the equilibrium Hamiltonian (61)–(63). Since both N̂1 and N̂2 commute
with Heff , the first term in (70) makes no contribution to Î. When the second
term in (70) is substituted into (68) and then into the Kubo formula (67),
the result, after integration by parts, can be expressed via 2-particle corre-
lation functions such as 〈ψ†

1(t)ψ2(t)ψ
†
2(0)ψ1(0)〉 (see Appendix B of [61] for

further details about this calculation). Due to the block-diagonal structure
of Heff , see (61), these correlation functions factorize into products of the
single-particle correlation functions describing the (free) ψ2-particles and the
(interacting) ψ1-particles. The result of the evaluation of the Kubo formula
can then be written as

G = G0

∫
dω

(
− df

dω

)
1

2

∑

s

[−πν Im Ts(ω)] . (71)

Here

G0 =
2e2

h
sin2(2θ0) =

2e2

h

4|t2L0t
2
R0|

(|t2L0| + |t2R0|)
2 , (72)
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f(ω) is the Fermi function, and Ts(ω) is the t-matrix for the Kondo model
(62). The t-matrix is related to the exact retarded Green function of the ψ1-
particles in the conventional way,

Gks,k′s(ω) = G0
k(ω) + G0

k(ω)Ts(ω)G0
k′(ω) , G0

k = (ω − ξk + i0)−1 .

Here Gks,k′s(ω) is the Fourier transformofGks,k′s(t) = −iθ(t)〈{ψ1ks(t), ψ
†
1k′s}〉,

where 〈. . .〉 stands for the thermodynamic averaging with the Hamiltonian
(62). In writing (71) we took into account the conservation of the total spin
(which implies that Gks,k′s′ = δss′Gks,k′s, and that the interaction in (62) is
local (which in turn means that the t-matrix is independent of k and k′).

5.3 Weak Coupling Regime: TK ≪ T ≪ δE

When the exchange term in the Hamiltonian (62) is treated perturbatively, the
main contribution to the t-matrix comes from the transitions of the type [62]

|ks, σ〉 → |k′s′, σ′〉 . (73)

Here the state |ks, σ〉 has an extra electron with spin s in the orbital state k
whereas the dot is in the spin state σ. By SU(2) symmetry, the amplitude of
the transition (73) satisfies

A|k′s′,σ′〉←|ks,σ〉 = A(ω)
1

4
(σs′s · σσ′σ) (74)

Note that the amplitude is independent of k, k′ because the interaction is
local. However, it may depend on ω due to retardation effects.

The transition (73) is elastic in the sense that the number of quasiparticles
in the final state of the transition is the same as that in the initial state (in
other words, the transition (73) is not accompanied by the production of
electron-hole pairs). Therefore, the imaginary part of the t-matrix can be
calculated with the help of the optical theorem [63], which yields

− πν Im Ts =
1

2

∑

σ

∑

s′σ′

∣∣∣πν A2
|k′s′,σ′〉←|ks,σ〉

∣∣∣ . (75)

The factor 1/2 here accounts for the probability to have spin σ on the dot in
the initial state of the transition. Substitution of the tunneling amplitude in
the form (74) into (75), and summation over the spin indexes with the help
of the identity (9) result in

− πν Im Ts =
3π2

16
ν2
∣∣A2(ω)

∣∣ . (76)

In the leading (first) order in J one readily obtains A(1) = J , independently
of ω. However, as discovered by Kondo [5], the second-order contribution A(2)

not only depends on ω, but is logarithmically divergent as ω → 0:
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A(2)(ω) = νJ2 ln |∆/ω| .

Here ∆ is the high-energy cutoff in the Hamiltonian (62). It turns out [62]
that similar logarithmically divergent contributions appear in all orders of
perturbation theory,

νA(n)(ω) = (νJ)n [ln |∆/ω|]n−1
,

resulting in a geometric series

νA(ω) =

∞∑

n=1

νA(n) = νJ

∞∑

n=0

[νJ ln |∆/ω|]n =
νJ

1 − νJ ln |∆/ω| .

With the help of the definition of the Kondo temperature (64), this can be
written as

νA(ω) =
1

ln |ω/TK | . (77)

Substitution of (77) into (76) and then into (71), and evaluation of the integral
over ω with logarithmic accuracy yield for the conductance across the dot

G = G0
3π2/16

ln2(T/TK)
, T ≫ TK . (78)

Equation (78) is the leading term of the asymptotic expansion in powers
of 1/ ln(T/TK), and represents the conductance in the leading logarithmic

approximation.
Equation (78) resulted from summing up the most-diverging contributions

in all orders of perturbation theory. It is instructive to re-derive it now in the
framework of renormalization group [64]. The idea of this approach rests on
the observation that the electronic states that give a significant contribution
to observable quantities, such as conductance, are states within an interval
of energies of the width ω ∼ T about the Fermi level, see (71). At temper-
atures of the order of TK , when the Kondo effect becomes important, this
interval is narrow compared to the width of the band D = ∆ in which the
Hamiltonian (62) is defined.

Consider a narrow strip of energies of the width δD ≪ D near the edge of
the band. Any transition (73) between a state near the Fermi level and one
of the states in the strip is associated with high (∼ D) energy deficit, and,
therefore, can only occur virtually. Obviously, virtual transitions via each of
the states in the strip result in the second-order correction ∼J2/D to the
amplitude A(ω) of the transition between states in the vicinity of the Fermi
level. Since the strip contains νδD electronic states, the total correction is [64]

δA ∼ νJ2δD/D .

This correction can be accounted for by modifying the exchange constant in
the effective Hamiltonian H̃eff which is defined for states within a narrower
energy band of the width D − δD [64],
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H̃eff =
∑

ks

ξkψ†
1ksψ1ks + JD−δD(s1 · S) , |ξk| < D − δD , (79)

JD−δD = JD + νJ2
D

δD

D
. (80)

Here JD is the exchange constant in the original Hamiltonian. Note that the
H̃eff has the same form as (62). This is not merely a conjecture, but can be
shown rigorously [57, 65].

The reduction of the bandwidth can be considered to be a result of a
unitary transformation that decouples the states near the band edges from
the rest of the band. In principle, any such transformation should also affect
the operators that describe the observable quantities. Fortunately, this is not
the case for the problem at hand. Indeed, the angle θ0 in (69) is not modified
by the transformation. Therefore, the current operator and the expression for
the conductance (71) retain their form.

Successive reductions of the high-energy cutoff D by small steps δD can
be viewed as a continuous process during which the initial Hamiltonian (62)
with D = ∆ is transformed to an effective Hamiltonian of the same form that
acts within the band of the reduced width D ≪ ∆. It follows from (80) that
the dependence of the effective exchange constant on D is described by the
differential equation [64, 65]

dJD

dζ
= νJ2

D , ζ = ln (∆/D) . (81)

With the help of (64), the solution of the RG (81) subject to the initial
condition J∆ = J can be cast into the form

νJD =
1

ln(D/TK)
.

The renormalization described by (81) can be continued until the bandwidth
D becomes of the order of the typical energy |ω| ∼ T for real transitions.
After this limit has been reached, the transition amplitude A(ω) is calculated
in lowest (first) order of perturbation theory in the effective exchange constant
(higher order contributions are negligibly small for D ∼ ω ),

νA(ω) = νJD∼|ω| =
1

ln |ω/TK |

Using now (76) and (71), we recover (78).

5.4 Strong Coupling Regime: T ≪ TK

As temperature approaches TK , the leading logarithmic approximation re-
sult (78) diverges. This divergence signals the failure of the approximation.
Indeed, we are considering a model with single-mode junctions between the
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dot and the leads. The maximal possible conductance in this case is 2e2/h.
To obtain a more precise bound, we discuss in this section the conductance
in the strong coupling regime T ≪ TK .

We start with the zero-temperature limit T = 0. As discussed above, the
ground state of the Kondo model (62) is a singlet [56], and, accordingly, is not
degenerate. Therefore, the t-matrix of the conduction electrons interacting
with the localized spin is completely characterized by the scattering phase
shifts δs for electrons with spin s at the Fermi level. The t-matrix is then
given by the standard scattering theory expression [63]

− πν Ts(0) =
1

2i
(Ss − 1) , Ss = e2iδs , (82)

where Ss is the scattering matrix for electrons with spin s, which for a single
channel case reduces to its eignevalue. Substitution of (82) into (71) yields

G(0) = G0
1

2

∑

s

sin2 δs (83)

for the conductance, see (71). The phase shifts in (82), (83) are obviously
defined only modπ (that is, δs and δs +π are equivalent). This ambiguity can
be removed if we set to zero the values of the phase shifts at J = 0 in (62).

In order to find the two phase shifts δs, we need two independent relations.
The first one follows from the invariance of the Kondo Hamiltonian (62) un-

der the particle-hole transformation ψks → sψ†
−k,−s (here s = ±1 for spin-

up/down electrons). The particle-hole symmetry implies the relation for the
t-matrix

Ts(ω) = −T ∗
−s(−ω) , (84)

valid at all ω and T . In view of (82), it translates into the relation for the
phase shifts at the Fermi level (ω = 0) [66],

δ↑ + δ↓ = 0 . (85)

The second relation follows from the requirement that the ground state
of the Hamiltonian (62) is a singlet [66]. In the absence of exchange (J = 0)
and at T = 0, an infinitesimally weak (B → +0) magnetic field acting on the
dot’s spin,

HB = BSz, (86)

would polarize it; here B is the Zeeman energy. Since free electron gas has zero
spin in the ground state, the total spin in a very large but finite region of space
V surrounding the dot coincides with the spin of the dot, 〈Sz〉J=0 = −1/2. If
the exchange with electron gas is now turned on, J > 0, a very weak field will
not prevent the formation of a singlet ground state. In this state, the total
spin within V is zero. Such change of the spin is possible if the numbers of
spin-up and spin-down electrons within V have changed to compensate for the
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dot’s spin: δN↑ − δN↓ = 1. By the Friedel sum rule, δNs are related to the
scattering phase shifts at the Fermi level, δNs = δs/π, which gives

δ↑ − δ↓ = π . (87)

Combining (85) and (87), we find |δs| = π/2. Equation (83) then yields
for zero-temperature and zero-field conductance across the dot [42]

G(0) = G0 . (88)

Thus, the growth of the conductance with lowering the temperature is limited
only by the value of G0. This value, see (72), depends only on the ratio of the
tunneling amplitudes |tL0/tR0|. If |tL0| = |tR0|, then the conductance at T = 0
will reach the maximal value G = 2e2/h allowed by quantum mechanics [42].

The maximal conductance, (88), is reached when a a singlet state is formed
by the itinerant electrons interacting with the local spin, as described by the
Kondo Hamiltonian (62). Perturbation of this singlet [66] by a magnetic field
B or temperature T leads to a decrease of the conductance. This decrease is
small as long as B and T are small compared to the singlet “binding energy”
TK . The reader is referred to the original papers [66] for the details. Here we
only quote the result [60] for the imaginary part of the t-matrix at |ω| and T
small compared to the Kondo temperature TK ,

− πν Im Ts(ω) = 1 − 3ω2 + π2T 2

2T 2
K

. (89)

Substitution of (89) into (71) yields

G = G0

[
1 − (πT/TK)

2
]

, T ≪ TK . (90)

Accordingly, corrections to the conductance are quadratic in temperature – a
typical Fermi liquid result [66]. The weak-coupling (T ≫ TK) and the strong-
coupling (T ≪ TK) asymptotes of the conductance have a strikingly different
structure. Nevertheless, since the Kondo effect is a crossover phenomenon
rather than a phase transition [55, 56, 57, 59], the dependence G(T ) is a
smooth and featureless [67] function throughout the crossover region T ∼ TK .

Finally, note that both (78) and (90) have been obtained here for the
particle-hole symmetric model (62). This approximation is equivalent to ne-
glecting the elastic co-tunneling contribution to the conductance Gel. The
asymptotes (78), (90) remain valid [30] as long as Gel/G0 ≪ 1. The over-
all temperature dependence of the linear conductance in the middle of the
Coulomb blockade valley is sketched in Fig. 4.
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G0

TK δE Tel Tin EC

(6.15) (4.5) (4.2) (3.6) (3.1)(6.27)

S =
1

2

Fig. 4. Sketch of the temperature dependence of the conductance in the middle of
the Coulomb blockade valley with S = 1/2 on the dot. The numbers in brackets
refer to the corresponding equations in the text

6 Discussion

In the simplest form of the Kondo effect considered in these notes, a quan-
tum dot behaves essentially as an artificial “magnetic impurity” with spin S,
coupled via exchange interaction to two conducting leads. The details of the
temperature dependence G(T ) of the linear conductance across the dot depend
on the dot’s spin S. In the most common case of S = 1/2 the conductance in
the Kondo regime monotonically increases with the decrease of temperature,
potentially up to the quantum limit 2e2/h. Qualitatively (although not quan-
titatively), this increase can be understood from the Anderson impurity model
in which the dot is described by a single energy level. On the contrary, when
spin on the dot exceeds 1/2 [68, 69, 70], the evolution of the conductance pro-
ceeds in two stages: the conductance first raises, and then drops again when
the temperature is lowered [30, 50]. The two-stage Kondo effect was observed
recently in a quantum dot tuned to the vicinity of the singlet-triplet transition
in its ground state [69]. In GaAs-based lateral quantum dot systems such tun-
ing is achieved by applying a weak magnetic field perpendicular to the plane
of the dot [69]. Pecularities of the Kondo effect in lateral quantum dots in the
vicinity of the singlet-triplet transition are discussed in [71, 72, 73] (theory of
the singlet-triplet transition in vertical dots [8, 9] was developed in [74], see
also [61]).

In a typical experiment [3], one measures the dependence of the differential
conductance on temperature T , Zeeman energy B, and dc voltage bias V .
When one of these parameters is much larger than the other two, and is also
large compared to the Kondo temperature TK , the differential conductance
exhibits a logarithmic dependence
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1

G0

dI

dV
∝
[
ln

max {T,B, eV }
TK

]−2

, (91)

characteristic for the weak coupling regime of the Kondo system. Consider
now a zero-temperature transport through a quantum dot with S = 1/2 in the
presence of a strong field B ≫ TK . In accordance with (91), the differential
conductance is small compared to G0 both for eV ≪ B and for eV ≫ B.
However, the calculation in the third order of perturbation theory in the
exchange constant yields a contribution that diverges logarithmically at eV =
B [47]. The divergence arises because of the partial restoration of the coherence
associated with the formation of the Kondo singlet: at eV = B the scattered
electron has just the right amount of energy to allow for a real transition
with a flip of spin. However, the full development of resonance is inhibited
by a finite lifetime of the excited spin state of the dot [53, 75]. As a result,
the peak in the differential conductance at eV ∼ B is broader and lower [53]
then the corresponding peak at zero bias in the absence of the field. Even
though for eV ∼ B ≫ TK the system is clearly in the weak coupling regime, a
resummation of the perturbation series turns out to be a prohibitively difficult
task, and the expression for the shape of the peak is still unknown. This
problem remains to be a subject of active research, see e.g. [76] and references
therein.

One encounters similar difficulties in studies of the effect of a weak ac
signal of frequency Ω � TK applied to the gate electrode [77] on transport
across the dot. In close analogy with the usual photon-assisted tunneling [78],
such perturbation is expected to result in the formation of satellites [79] at
eV = n�Ω (here n is an integer) to the zero-bias peak in the differential
conductance. Again, the restoration of coherence responsible for the formation
of the satellite peaks is limited by the finite lifetime effects [80].

The spin degeneracy is not the only possible source of the Kondo effect
in quantum dots. Consider, for example, a large dot connected by a single-
mode junction to a conducting lead and tuned to the vicinity of the Coulomb
blockade peak [28]. If one neglects the finite level spacing in the dot, then the
two almost degenerate charge state of the dot can be labeled by a pseudospin,
while real spin plays the part of the channel index [28, 81]. This setup turns out
to be a robust realization [28, 81] of the symmetric (i.e. having equal exchange
constants) two-channel S = 1/2 Kondo model [54]. The model results in a
peculiar temperature dependence of the observable quantities, which at low
temperatures follow power laws with manifestly non-Fermi-liquid fractional
values of the exponents [82].

It should be emphasized that in the usual geometry consisting of two
leads attached to a Coulomb-blockaded quantum dot with S = 1/2, only
the conventional Fermi-liquid behavior can be observed at low temperatures.
Indeed, in this case the two exchange constants in the effective exchange
Hamiltonian (52) are vastly different, and their ratio is not tunable by con-
ventional means, see the discussion in Sect. 5.1 above. A way around this
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difficulty was proposed recently in [83]. The key idea is to replace one of the
leads in the standard configuration by a very large quantum dot, characterized
by a level spacing δE′ and a charging energy E′

C . At T ≫ δE′, particle-hole
excitations within this dot are allowed, and electrons in it participate in the
screening of the smaller dot’s spin. At the same time, as long as T ≪ E′

C , the
number of electrons in the large dot is fixed. Therefore, the large dot provides
for a separate screening channel which does not mix with that supplied by the
remaining lead. In this system, the two exchange constants are controlled by
the conductances of the dot-lead and dot-dot junctions. A strategy for tuning
the device parameters to the critical point characterized by the two-channel
Kondo physics is discussed in [84].

Finally, we should mention that the description based on the universal
Hamiltonian (15) is not applicable to large quantum dots subjected to a quan-

tizing magnetic field H⊥ [85, 86]. Such field changes drastically the way the
screening occurs in a confined droplet of a two-dimensional electron gas [87].
The droplet is divided into alternating domains containing compressible and
incompressible electron liquids. In the metal-like compressible regions, the
screening is almost perfect. On the contrary, the incompressible regions be-
have very much like insulators. In the case of lateral quantum dots, a large
compressible domain is formed near the center of the dot. The domain is
surrounded by a narrow incompressible region separating it from another
compressible ring-shaped domain formed along the edges of the dot [88].
This system can be viewed as two concentric capacitively coupled quantum
“dots” – the core dot and the edge dot [85, 88]. When the leads are attached to
the edge dot, the measured conductance is sensitive to its spin state: when the
number of electrons in the edge dot is odd, the conductance becomes large due
to the Kondo effect [85]. Changing the field causes redistribution of electrons
between the core and the edge, resulting in a striking checkerboard-like pattern
of high- and low-conductance regions [85, 86]. This behavior persists as long
as the Zeeman energy remains small compared to the Kondo temperature.
Note that compressible regions are also formed around an antidot – a poten-
tial hill in a two-dimensional electron gas in the quantum Hall regime [89].
Both Coulomb blockade oscillations and Kondo-like behavior were observed
in these systems [90].

7 Summary

Kondo effect arises whenever a coupling to a Fermi gas induces transitions
within otherwise degenerate ground state multiplet of an interacting system.
Both coupling to a Fermi gas and interactions are naturally present in a
nanoscale transport experiment. At the same time, many nanostructures can
be easily tuned to the vicinity of a degeneracy point. This is why the Kondo
effect in its various forms often influences the low temperature transport in
meso- and nanoscale systems.
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We reviewed in these notes the theory of the Kondo effect in transport
through quantum dots. A Coulomb-blockaded quantum dot behaves in many
aspects as an artificial “magnetic impurity” coupled via exchange interaction
to two conducting leads. Kondo effect in transport through such “impurity”
manifests itself in the lifting of the Coulomb blockade at low temperatures,
and, therefore, can be unambiguously identified. Quantum dot systems not
only offer a direct access to transport properties of an artificial impurity, but
also provide one with a broad arsenal of tools to tweak the impurity properties,
unmatched in conventional systems. The characteristic energy scale for the
intra-dot excitations is much smaller than the corresponding scale for natural
magnetic impurities. This allows one to induce degeneracies in the ground
state of a dot which are more exotic than just the spin degeneracy. This is
only one out of many possible extensions of the simple model discussed here.
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B. Babić, T. Kontos, C. Schönenberger: Preprint cond-mat/0407193 98

11. J. Park et al: Nature 417, 722 (2002)
W. Liang et al: Nature 417, 725 (2002)
L.H. Yu, D. Natelson: Nano Lett. 4, 79 (2004) 98



128 M. Pustilnik and L.I. Glazman

12. L.T. Li et al: Phys. Rev. Lett. 80, 2893 (1998)
V. Madhavan et al: Science 280, 567 (1998)
H.C. Manoharan et al: Nature 403, 512 (2000) 98

13. M.V. Berry: Proc. R. Soc. A 400, 229 (1985)
B.L. Altshuler, B.I. Shklovskii: Sov. Phys.–JETP 64, 127 (1986) 99, 100

14. C.W.J. Beenakker: Rev. Mod. Phys. 69, 731 (1997) 99
15. Y. Alhassid, Rev. Mod. Phys. 72, 895 (2000) 99, 107, 109
16. F. Haake: Quantum Signatures of Chaos (Springer, New York 2001) 99, 100, 105
17. K. Efetov: Supersymmetry in Disorder and Chaos (Cambridge University Press,

Cambridge 1997) 99, 100, 105, 109
18. B.L. Altshuler et al: Phys. Rev. Lett. 78, 2803 (1997)

O. Agam et al: Phys. Rev. Lett. 78, 1956 (1997)
Ya.M. Blanter: Phys. Rev. B 54, 12807 (1996)
Ya.M. Blanter, A.D. Mirlin: Phys. Rev. B 57, 4566 (1998)
Ya.M. Blanter, A.D. Mirlin, B.A. Muzykantskii: Phys. Rev. Lett. 78, 2449 (1997)
I.L. Aleiner, L.I. Glazman: Phys. Rev. B 57, 9608 (1998) 100

19. I.L. Kurland, I.L. Aleiner, B.L. Altshuler: Phys. Rev. B 62, 14886 (2000) 100, 102, 103
20. I.L. Aleiner, P.W. Brouwer, L.I. Glazman: Phys. Rep. 358, 309 (2002) 100, 101, 102, 108, 109, 112
21. M.V. Berry: Journ. of Phys. A 10, 2083 (1977)

A.D. Mirlin: Phys. Rep. 326, 259 (2000) 100
22. J.A. Folk et al: Phys. Rev. Lett. 76, 1699 (1996) 100, 108
23. J.M. Ziman: Principles of the Theory of Solids (Cambridge University Press,

Cambridge 1972) p 339 102
24. J. von Delft, D.C. Ralph: Phys. Rep. 345, 61 (2001) 102
25. K.A. Matveev, L.I. Glazman, R.I. Shekhter: Mod. Phys. Lett. B 8, 1007 (1994) 102
26. P.W. Brouwer, Y. Oreg, B.I. Halperin: Phys. Rev. B 60, R13977 (1999)

H.U. Baranger, D. Ullmo, L.I. Glazman: Phys. Rev. B 61, R2425 (2000) 103
27. R.M. Potok et al: Phys. Rev. Lett. 91, 016802 (2003)

J.A. Folk et al: Phys. Scripta T90, 26 (2001)
S. Lindemann et al: Phys. Rev. B 66, 195314 (2002) 103

28. K.A. Matveev: Phys. Rev. B 51, 1743 (1995) 103, 125
29. K. Flensberg: Phys. Rev. B 48, 11156 (1993) 103
30. M. Pustilnik, L.I. Glazman: Phys. Rev. Lett. 87, 216601 (2001) 103, 114, 115, 123, 124
31. C.E. Porter, R.G. Thomas: Phys. Rev. 104, 483 (1956) 105
32. I.O. Kulik, R.I. Shekhter: Sov. Phys.–JETP 41, 308 (1975)

L.I. Glazman, R.I. Shekhter: Journ. of Phys.: Condens. Matter 1, 5811 (1989) 105, 106, 109
33. L.I. Glazman, K.A. Matveev: JETP Lett. 48, 445 (1988)

C.W.J. Beenakker: Phys. Rev. B 44, 1646 (1991)
D.V. Averin, A.N. Korotkov, K.K. Likharev: Phys. Rev. B 44, 6199 (1991) 105, 107

34. R.A. Jalabert, A.D. Stone, Y. Alhassid: Phys. Rev. Lett. 68, 3468 (1992) 108, 109
35. V.N. Prigodin, K.B. Efetov, S. Iida: Phys. Rev. Lett. 71, 1230 (1993) 108, 109
36. A.M. Chang et al: Phys. Rev. Lett. 76, 1695 (1996) 108
37. B.L. Altshuler et al: Phys. Rev. B 22, 5142 (1980)

S. Hikami, A.I. Larkin, Y. Nagaoka: Progr. Theor. Phys. 63, 707 (1980) 109
38. I. Giaever, H.R. Zeller: Phys. Rev. Lett. 20, 1504 (1968)

H.R. Zeller, I. Giaever: Phys. Rev. 181, 789 (1969) 109
39. D.V. Averin, Yu.V. Nazarov: Phys. Rev. Lett. 65, 2446 (1990) 109, 110, 111
40. A.A. Abrikosov: Fundamentals of the Theory of Metals (North-Holland,

Amsterdam 1988) p 620 110



Low-Temperature Conduction of a Quantum Dot 129

41. I.L. Aleiner, L.I. Glazman: Phys. Rev. Lett. 77, 2057 (1996) 112, 113
42. L.I. Glazman, M.E. Raikh: JETP Lett. 47, 452 (1988)

T.K. Ng, P.A. Lee: Phys. Rev. Lett. 61, 1768 (1988) 113, 116, 123
43. W.G. van der Wiel et al: Science 289, 2105 (2000)

Y. Ji, M. Heiblum, H. Shtrikman: Phys. Rev. Lett. 88, 076601 (2002) 113, 116
44. L.I. Glazman, M. Pustilnik: In: New Directions in Mesoscopic Physics (Towards

Nanoscience) ed by R. Fazio et al (Kluwer, Dordrecht 2003) p 93 113
45. C.B. Duke: Tunneling in Solids (Academic Press, New York 1969)

J.M. Rowell: In: Tunneling Phenomena in Solids ed by E. Burstein, S. Lundqvist
(Plenum Press, New York 1969) p 385 113

46. A.F.G. Wyatt: Phys. Rev. Lett. 13, 401 (1964)
R.A. Logan, J.M. Rowell: Phys. Rev. Lett. 13, 404 (1964) 113

47. J. Appelbaum: Phys. Rev. Lett. 17, 91 (1966)
J.A. Appelbaum: Phys. Rev. 154, 633 (1967) 113, 125

48. P.W. Anderson: Phys. Rev. Lett. 17, 95 (1966) 113, 116
49. G.A. Fiete et al: Phys. Rev. B 66, 024431 (2002) 114, 115
50. M. Pustilnik, L.I. Glazman: Journ. of Physics: Condens. Matter 16, R513 (2004) 114, 115, 124
51. J.R. Schrieffer, P.A. Wolff: Phys. Rev. 149, 491 (1966) 114
52. P.G. Silvestrov, Y. Imry: Phys. Rev. Lett. 85, 2565 (2000) 116
53. Y. Meir, N.S. Wingreen, P.A. Lee: Phys. Rev. Lett. 70, 2601 (1993) 116, 125
54. P. Nozières, A. Blandin: J. Physique 41, 193 (1980) 116, 125
55. P. Coleman: In: Lectures on the Physics of Highly Correlated Electron Systems

VI, ed. F. Mancini (American Institute of Physics, New York 2002) pp 79–160
(cond-mat/0206003)
A.S. Hewson: The Kondo Problem to Heavy Fermions (Cambridge University
Press, Cambridge 1997) 117, 123

56. P.W. Anderson: Basic Notions of Condensed Matter Physics (Addison-Wesley,
Reading 1997) 117, 122, 123

57. K.G. Wilson: Rev. Mod. Phys. 47, 773 (1975) 117, 121, 123
58. L.I. Glazman, F.W.J. Hekking, A.I. Larkin: Phys. Rev. Lett. 83, 1830 (1999) 117
59. A.M. Tsvelick, P.B. Wiegmann: Adv. Phys. 32, 453 (1983)

N. Andrei, K. Furuya, J.H. Lowenstein: Rev. Mod. Phys. 55, 331 (1983) 117, 123
60. I. Affleck, A.W.W. Ludwig: Phys. Rev. B 48, 7297 (1993) 118, 123
61. M. Pustilnik, L.I. Glazman: Phys. Rev. B 64, 045328 (2001) 118, 124
62. A.A. Abrikosov: Physics 2, 5 (1965)

A.A. Abrikosov: Sov. Phys.–Uspekhi 12, 168 (1969) 119, 120
63. R.G. Newton: Scattering Theory of Waves and Particles (Dover, Mineola 2002) 119, 122
64. P.W. Anderson: Journ. of Physics C 3, 2436 (1970) 120, 121
65. P.W. Anderson, G. Yuval, D.R. Hamann: Phys. Rev. B 1, 4464 (1970) 121
66. P. Nozières: J. Low Temp. Phys. 17, 31 (1974)

P. Nozières: J. Physique 39, 1117 (1978) 122, 123
67. T.A. Costi, A.C. Hewson, V. Zlatić: Journ. of Physics: Condens. Matter 6, 2519

(1994) 123
68. J. Schmid et al: Phys. Rev. Lett. 84, 5824 (2000) 72, 124
69. W.G. van der Wiel et al: Phys. Rev. Lett. 88, 126803 (2002) 124
70. A. Kogan et al: Phys. Rev. B 67, 113309 (2003) 124
71. M. Pustilnik, Y. Avishai, K. Kikoin: Phys. Rev. Lett. 84, 1756 (2000) 124
72. V.N. Golovach, D. Loss: Europhys. Lett. 62, 83 (2003)

M. Pustilnik, L.I. Glazman, W. Hofstetter: Phys. Rev. B 68, 161303(R) (2003) 124



130 M. Pustilnik and L.I. Glazman

73. W. Izumida, O. Sakai,Y. Shimizu: J. Phys. Soc. Jpn. 67, 2444 (1998) 124
74. M. Eto, Yu.V. Nazarov: Phys. Rev. Lett. 85, 1306 (2000)

M. Pustilnik, L.I. Glazman: Phys. Rev. Lett. 85, 2993 (2000) 124
75. D.L. Losee, E.L. Wolf: Phys. Rev. Lett. 23, 1457 (1969) 125
76. A. Rosch et al: Phys. Rev. B 68, 014430 (2003) 125
77. J.M. Elzerman et al: J. Low Temp. Phys. 118, 375 (2000) 125
78. P.K. Tien, J.P. Gordon: Phys. Rev. 129, 647 (1963) 125
79. M.H. Hettler and H. Schoeller: Phys. Rev. Lett. 74, 4907 (1995) 125
80. A. Kaminski, Yu.V. Nazarov, L.I. Glazman: Phys. Rev. Lett. 83, 384 (1999)

A. Kaminski, Yu.V. Nazarov, L.I. Glazman: Phys. Rev. B 62, 8154 (2000) 125
81. K.A. Matveev: Sov. Phys.–JETP 72, 892 (1991) 125
82. D.L. Cox, A. Zawadowski: Adv. Phys. 47, 599 (1998) 125
83. Y. Oreg, D. Goldhaber-Gordon: Phys. Rev. Lett. 90, 136602 (2003) 126
84. M. Pustilnik et al: Phys. Rev. B 69, 115316 (2004) 126
85. M. Keller et al: Phys. Rev. B 64, 033302 (2001)

M. Stopa et al: Phys. Rev. Lett. 91, 046601 (2003) 126
86. S.M. Maurer et al: Phys. Rev. Lett. 83, 1403 (1999)

D. Sprinzak et al: Phys. Rev. Lett. 88, 176805 (2002)
C. Fühner et al: Phys. Rev. B 66, 161305(R) (2002) 126

87. C.W.J. Beenakker: Phys. Rev. Lett. 64, 216 (1990)
A.M. Chang: Solid State Commun. 74, 871 (1990)
D.B. Chklovskii, B.I. Shklovskii, L.I. Glazman: Phys. Rev. B 46, 4026 (1992) 126

88. P.L. McEuen et al: Phys. Rev. B 45, 11419 (1992) A.K. Evans, L.I. Glazman,
B.I. Shklovskii: Phys. Rev. B 48, 11120 (1993) 126

89. V.J. Goldman, B. Su: Science 267, 1010 (1995) 126
90. M. Kataoka et al: Phys. Rev. Lett. 83, 160 (1999)

M. Kataoka et al: Phys. Rev. Lett. 89, 226803 (2002) 126



Andreev Billiards
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The Netherlands

Summary. This is a review of recent advances in our understanding of how An-
dreev reflection at a superconductor modifies the excitation spectrum of a quan-
tum dot. The emphasis is on two-dimensional impurity-free structures in which the
classical dynamics is chaotic. Such Andreev billiards differ in a fundamental way
from their non-superconducting counterparts. Most notably, the difference between
chaotic and integrable classical dynamics shows up already in the level density, in-
stead of only in the level–level correlations. A chaotic billiard has a gap in the
spectrum around the Fermi energy, while integrable billiards have a linearly vanish-
ing density of states. The excitation gap Egap corresponds to a time scale �/Egap

which is classical (�-independent, equal to the mean time τdwell between Andreev
reflections) if τdwell is sufficiently large. There is a competing quantum time scale,
the Ehrenfest time τE , which depends logarithmically on �. Two phenomenologi-
cal theories provide a consistent description of the τE-dependence of the gap, given
qualitatively by Egap ≃ min(�/τdwell, �/τE). The analytical predictions have been
tested by computer simulations but not yet experimentally.

1 Introduction

Forty years ago, Andreev discovered a peculiar property of superconducting
mirrors [1]. As illustrated in Fig. 1, an electron that tries to enter a supercon-
ductor coming from the Fermi level of a normal metal is forced to retrace its
path, as if time is reversed. Also the charge of the particle is reversed, since the
negatively charged electron is converted into a positively charged hole. The
velocity of a hole is opposite to its momentum, so the superconducting mirror
conserves the momentum of the reflected particle. In contrast, reflection at
an ordinary mirror (an insulator) conserves charge but not momentum. The
unusual scattering process at the interface between a normal metal (N) and
a superconductor (S) is called Andreev reflection.

Andreev reflection is the key concept needed to understand the properties
of nanostructures with NS interfaces [2]. Most of the research has concen-
trated on transport properties of open structures, see [3, 4] for reviews. There

C.W.J. Beenakker: Andreev Billiards, Lect. Notes Phys. 667, 131–174 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
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e

e

N I N S

e

h

Fig. 1. Normal reflection by an insulator (I) versus Andreev reflection by a su-
perconductor (S) of an electron excitation in a normal metal (N) near the Fermi
energy EF . Normal reflection (left) conserves charge but does not conserve momen-
tum. Andreev reflection (right) conserves momentum but does not conserve charge:
The electron (e) is reflected as a hole (h) with the same momentum and opposite
velocity (retroreflection). The missing charge of 2e is absorbed as a Cooper pair by
the superconducting condensate. The electron-hole symmetry is exact at the Fermi
level. If the electron is at a finite energy E above EF , then the hole is at an en-
ergy E below EF . The energy difference of 2E breaks the electron-hole symmetry.
From [3]

experiment and theory have reached a comparable level of maturity. In the
present review we focus on spectral properties of closed structures, such as the
quantum dot with superconducting contacts shown in Fig. 2. The theoretical
understanding of these systems, gained from the combination of analytical
theory and computer simulations, has reached the stage that a comprehen-
sive review is called for – even though an experimental test of the theoretical
predictions is still lacking.

An impurity-free quantum dot in contact with a superconductor has been
called an “Andreev billiard” [5].1 The name is appropriate, and we will use
it too, because it makes a connection with the literature on quantum chaos
[7, 8]. A billiard (in the sense of a bounded two-dimensional region in which all
scattering occurs at the boundaries) is the simplest system in which to search
for quantum mechanical signatures of chaotic classical dynamics. That is the
basic theme of the field of quantum chaos. By introducing a superconducting
segment in the boundary of a billiard one has the possibility of unraveling the
chaotic dynamics, so to say by making time flow backwards. Andreev billiards
therefore reveal features of the chaotic dynamics that are obscured in their
normal (non-superconducting) counterparts.

The presence of even the smallest superconducting segment suppresses the
quantum mechanical level density at sufficiently low excitation energies. This
suppression may take the form of an excitation gap, at an energy Egap well

1 Open structures containing an antidot lattice have also been called “Andreev
billiards” [6], but in this review we restrict ourselves to closed systems.
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Fig. 2. Quantum dot (central square of dimensions 500 nm×500 nm) fabricated in a
high-mobility InAs/AlSb heterostructure and contacted by four superconducting Nb
electrodes. Device made by A. T. Filip, Groningen University (unpublished figure)

below the gap ∆ in the bulk superconductor (hence the name “minigap”).
It may also take the form of a level density that vanishes smoothly (typi-
cally linearly) upon approaching the Fermi level, without an actual gap. The
presence or absence of a gap is a quantum signature of chaos. That is a fun-
damental difference between normal billiards and Andreev billiards, since in a
normal billiard the level density can not distinguish chaotic from integrable
classical dynamics. (It depends only on the area of the billiard, not on its
shape.)

A powerful technique to determine the spectrum of a chaotic system is
random-matrix theory (RMT) [3, 9, 10]. Although the appearance of an ex-
citation gap is a quantum mechanical effect, the corresponding time scale
�/Egap as it follows from RMT is a classical (meaning �-independent) quan-
tity: It is the mean time τdwell that an electron or hole excitation dwells in
the billiard between two subsequent Andreev reflections. A major develop-
ment of the last few years has been the discovery of a competing quantum
mechanical time scale τE ∝ | ln �|. (The subscript E stands for Ehrenfest.)
RMT breaks down if τE

>
∼ τdwell and a new theory is needed to determine

the excitation gap in this regime. Two different phenomenological approaches
have now reached a consistent description of the τE-dependence of the gap,
although some disagreement remains.

The plan of this review is as follows. The next four sections contain back-
ground material on Andreev reflection (Sect. 2), on the minigap in NS junc-
tions (Sect. 3), on the scattering theory of Andreev billiards (Sect. 4), and on
a stroboscopic model used in computer simulations (Sect. 5). The regime of
RMT (when τE ≪ τdwell) is described in Sect. 6 and the quasiclassical regime
(when τE ≫ τdwell) is described in Sect. 7. The crossover from Egap ≃ �/τdwell

to Egap ≃ �/τE is the topic of Sect. 8. We conclude in Sect. 9.
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2 Andreev Reflection

The quantum mechanical description of Andreev reflection starts from a pair
of Schrödinger equations for electron and hole wave functions u(r) and v(r),
coupled by the pair potential ∆(r). These socalled Bogoliubov-De Gennes
(BdG) equations [11] take the form

HBG

(

u
v

)

= E

(

u
v

)

, (1)

HBG =

(

H ∆(r)
∆∗(r) −H∗

)

. (2)

The Hamiltonian H = (p + eA)2/2m + V − EF is the single-electron Hamil-
tonian in the field of a vector potential A(r) and electrostatic potential V (r).
The excitation energy E is measured relative to the Fermi energy EF . If (u, v)
is an eigenfunction with eigenvalue E, then (−v∗, u∗) is also an eigenfunction,
with eigenvalue −E. The complete set of eigenvalues thus lies symmetrically
around zero. The quasiparticle excitation spectrum consists of all positive E.

In a uniform system with ∆(r) ≡ ∆, A(r) ≡ 0, V (r) ≡ 0, the solution of
the BdG equations is

E =
[

(�2k2/2m − EF )2 + ∆2
]1/2

, (3)

u(r) = (2E)−1/2
(

E + �
2k2/2m − EF

)1/2
eik·r , (4)

v(r) = (2E)−1/2
(

E − �
2k2/2m + EF

)1/2
eik·r . (5)

The excitation spectrum is continuous, with excitation gap ∆. The eigenfunc-
tions (u, v) are plane waves characterized by a wavevector k. The coefficients
of the plane waves are the two coherence factors of the BCS (Bardeen-Cooper-
Schrieffer) theory.

At an interface between a normal metal and a superconductor the pairing
interaction drops to zero over atomic distances at the normal side. (We assume
non-interacting electrons in the normal region.) Therefore, ∆(r) ≡ 0 in the
normal region. At the superconducting side of the NS interface, ∆(r) recovers
its bulk value ∆ only at some distance from the interface. This suppression of
∆(r) is neglected in the step-function model

∆(r) =

{

∆ if r ∈ S ,
0 if r ∈ N .

(6)

The step-function pair potential is also referred to in the literature as a “rigid
boundary condition” [12]. It greatly simplifies the analysis of the problem
without changing the results in any qualitative way.

Since we will only be considering a single superconductor, the phase of
the superconducting order parameter is irrelevant and we may take ∆ real.
We refer to [13] for a tutorial introduction to mesoscopic Josephson junctions,
such as a quantum dot connected to two superconductors, and to [14] for a
comprehensive review of the current-phase relation in Josephson junctions.
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3 Minigap in NS Junctions

The presence of a normal metal interface changes the excitation spectrum
(proximity effect). The continuous spectrum above the bulk gap ∆ differs
from the BCS form (4) and in addition there may appear discrete energy
levels En < ∆.

The wave function of the lowest level contains electron and hole compo-
nents u0, v0 of equal magnitude, mixed by Andreev reflection. The mean time
τdwell between Andreev reflections (corresponding to the mean life time of an
electron or hole excitation) sets the scale E0 ≡ Egap ≃ �/τdwell for the energy
of this lowest level [15]. This “minigap” is smaller than the bulk gap by a
factor ξ0/vF τdwell, with ξ0 = �vF /∆ the superconducting coherence length
and vF the Fermi velocity. The energy �/τdwell is called the Thouless energy
ET , because of the role it plays in Thouless’s theory of localization [2].

The simplest NS junction, which can be analyzed exactly [16], consists of
an impurity-free normal metal layer (thickness d) on top of a bulk supercon-
ductor.2

Because of translational invariance parallel to the NS interface, the paral-
lel component p‖ of the momentum is a good quantum number. The lowest
excitation energy

E0(p‖) =
π�

2T
(

p‖
) , T

(

p‖
)

=
2md

(

p2
F − p2

‖

)1/2
, (7)

is the reciprocal of the time T (p‖) between two subsequent Andreev reflec-
tions. This time diverges when p‖ approaches the Fermi momentum pF =

�kF =
√

2mEF , so E0 can come microscopically close to zero. The lower limit
E0

>
∼ �

2/md2 is set by the quantization of the momentum perpendicular to
the layer.

Impurities in the normal metal layer (with mean free path l) prevent
the time between Andreev reflections to grow much larger than τdwell ≃
max(l/vF , d2/vF l). The excitation gap [18, 19, 20]

Egap ≃ �/τdwell ≃ (�vF l/d2)min(1, d2/l2) (8)

is now a factor kF l min(1, d2/l2) larger than in the absence of impurities. A
precise calculation using disorder-averaged Green functions (reviewed in [21])
gives the curve shown in Fig. 3. The two asymptotes are [20]

2 The paper by De Gennes and Saint-James [16] first noticed the mixed electron-
hole character of excitations below ∆. The property of retroreflection at the NS
interface was first noticed by Andreev [1], which in the opinion of the present
author justifies the name “Andreev reflection”. For a different opinion, see [17].
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Fig. 3. Excitation gap Egap of a disordered NS junction, as a function of the ratio of
the thickness d of the normal metal layer and the mean free path l. The curve in the
bottom panel is calculated from the disorder-averaged Green function (for ξ0 ≪ d, l).
The top panel illustrates the geometry. The normal metal layer has a specularly
reflecting upper surface and an ideally transmitting lower surface. Adapted from
[20]

Egap =

{

0.43 �vF /l , if d/l ≪ 1 ,
0.78 �D/d2 , if d/l ≫ 1 ,

(9)

with D = vF l/3 the diffusion constant in the normal metal.
The minigap in a ballistic quantum dot (Andreev billiard) differs from

that in a disordered NS junction in two qualitative ways:

1. The opening of an excitation gap depends on the shape of the boundary,
rather than on the degree of disorder [22]. A chaotic billiard has a gap
at the Thouless energy ET ≃ �/τdwell, like a disordered NS junction. An
integrable billiard has a linearly vanishing density of states, like a ballistic
NS junction.

2. In a chaotic billiard a new time scale appears, the Ehrenfest time τE , which
competes with τdwell in setting the scale for the excitation gap [23]. While
τdwell is a classical �-independent time scale, τE ∝ | ln �| has a quantum
mechanical origin.

Because one can not perform a disorder average in Andreev billiards, the
Green function formulation is less useful than in disordered NS junctions.
Instead, we will make extensive use of the scattering matrix formulation, ex-
plained in the next section.
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4 Scattering Formulation

In the step-function model (6) the excitation spectrum of the coupled electron-
hole quasiparticles can be expressed entirely in terms of the scattering matrix
of normal electrons [24].

The scattering geometry is illustrated in Fig. 4. It consists of a finite
normal-metal region N adjacent to a semi-infinite superconducting region S.
The metal region represents the Andreev billiard. To obtain a well-defined
scattering problem we insert an ideal (impurity-free) normal lead between N
and S. We assume that the only scattering in the superconductor consists of
Andreev reflection at the NS interface (no disorder in S). The superconductor
may then also be represented by an ideal lead. We choose a coordinate system
so that the normal and superconducting leads lie along the x-axis, with the
interface at x = 0.

S N

x
0

c
e
- c

h
+

c
e
+

c
h
-

Fig. 4. Normal metal (N) containing an Andreev billiard, coupled to a supercon-
ductor (S) by an ideal lead. The dashed line represents the NS interface. Scattering
states cin = (c+

e , c−h ) and cout = (c−e , c+
h ) are indicated schematically

We first construct a basis for the scattering matrix. In the normal lead N
the eigenfunctions of the BdG equation (1) can be written in the form

Ψ±
n,e(N) =

(

1
0

) 1
√

ke
n

Φn(y, z) exp(±ike
nx) , (10a)

Ψ±
n,h(N) =

(

0
1

) 1
√

kh
n

Φn(y, z) exp(±ikh
nx) , (10b)

where the wavenumbers ke
n and kh

n are given by

ke,h
n =

√
2m

�
(EF − En + σe,hE)1/2 , (11)
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and we have defined σe ≡ 1, σh ≡ −1. The labels e and h indicate the electron
or hole character of the wave function. The index n labels the modes, Φn(y, z)
is the transverse wave function of the n-th mode, and En its threshold energy:

[

(

p2
y + p2

z

)

/2m + V (y, z)
]

Φn(y, z) = EnΦn(y, z) . (12)

The eigenfunction Φn is normalized to unity,
∫

dy
∫

dz |Φn|2 = 1.
In the superconducting lead S the eigenfunctions are

Ψ±
n,e(S) =

(

eiηe/2

e−iηe/2

)

1√
2qe

n

(E2/∆2 − 1)−1/4

× Φn(y, z) exp(±iqe
nx) , (13a)

Ψ±
n,h(S) =

(

eiηh/2

e−iηh/2

)

1
√

2qh
n

(E2/∆2 − 1)−1/4

× Φn(y, z) exp(±iqh
nx) . (13b)

We have defined

qe,h
n =

√
2m

�
[EF − En + σe,h(E2 − ∆2)1/2]1/2, (14)

ηe,h = σe,h arccos(E/∆) . (15)

The wave functions (10) and (13) have been normalized to carry the same
amount of quasiparticle current, because we want to use them as the basis for
a unitary scattering matrix. The direction of the velocity is the same as the
wave vector for the electron and opposite for the hole.

A wave incident on the Andreev billiard is described in the basis (10) by
a vector of coefficients

cin = (c+
e , c−h ) , (16)

as shown schematically in Fig. 4. (The mode index n has been suppressed for
simplicity of notation.) The reflected wave has vector of coefficients

cout = (c−e , c+
h ) . (17)

The scattering matrix SN of the normal region relates these two vectors, cout
N =

SNcin
N . Because the normal region does not couple electrons and holes, this

matrix has the block-diagonal form

SN(E) =

(

S(E) 0
0 S(−E)∗

)

. (18)

Here S(E) is the unitary scattering matrix associated with the single-electron
Hamiltonian H. It is an N ×N matrix, with N(E) the number of propagating
modes at energy E. The dimension of SN(E) is N(E) + N(−E).
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For energies 0 < E < ∆ there are no propagating modes in the supercon-
ducting lead S. Restricting ourselves to that energy range, we can define a scat-
tering matrix SA for Andreev reflection at the NS interface by cin = SAcout.
The elements of SA are obtained by matching the wave function (10) at x = 0
to the decaying wave function (13). Since ∆ ≪ EF one may ignore normal
reflections at the NS interface and neglect the difference between N(E) and
N(−E). This is known as the Andreev approximation [1]. The result is

SA(E) =

(

0 α(E)
α(E) 0

)

, (19)

α(E) = e−i arccos(E/∆) =
E

∆
− i

√

1 − E2

∆2
. (20)

Andreev reflection transforms an electron mode into a hole mode, without
change of mode index. The transformation is accompanied by a phase shift –
arccos(E/∆) due to the penetration of the wave function into the supercon-
ductor.

We are now ready to relate the excitation spectrum of the Andreev billiard
to the scattering matrix of the normal region. We restrict ourselves to the
discrete spectrum (see [24] for the continuous spectrum). The condition cin =
SASNcin for a bound state implies Det (1−SASN) = 0. Using (18), (19), and
the identity

Det
(

a b
c d

)

= Det (ad − aca−1b) (21)

one obtains the equation [24]

Det
[

1 − α(E)2S(E)S(−E)∗
]

= 0 . (22)

The roots Ep of this determinantal equation constitute the discrete spectrum
of the Andreev billiard.

5 Stroboscopic Model

Although the phase space of the Andreev billiard is four-dimensional, like
for any billiard it can be reduced to two dimensions on a Poincaré surface
of section [7, 8]. This amounts to a stroboscopic description of the classical
dynamics, because the position and momentum are only recorded when the
particle crosses the surface of section. Quantum mechanically, the stroboscopic
evolution of the wave function is described by a compact unitary map rather
than by a noncompact Hermitian operator [25, 26]. What one loses by the
stroboscopic description is information on time scales below the time of flight
across the billiard. What one gains is an enormous increase in computational
efficiency.
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A stroboscopic model of an Andreev billiard was constructed by Jacquod
et al. [27], building on an existing model for open normal billiards called the
open kicked rotator [28]. The Andreev kicked rotator possesses the same phe-
nomenology as the Andreev billiard, but is much more tractable numerically.3

In this subsection we discuss how it is formulated. Some results obtained by
this numerical method will be compared in subsequent sections with results
obtained by analytical means.

A compact unitary map is represented in quantum mechanics by the Flo-
quet operator F , which gives the stroboscopic time evolution u(pτ0) = F pu(0)
of an initial wave function u(0). (We set the stroboscopic period τ0 = 1 in
most equations.) The unitary M × M matrix F has eigenvalues exp(−iεm),
with the quasi-energies εm ∈ (−π, π) (measured in units of �/τ0). This de-
scribes the electron excitations above the Fermi level. Hole excitations below
the Fermi level have Floquet operator F ∗ and wave function v(p) = (F ∗)pv(0).
The mean level spacing of electrons and holes separately is δ = 2π/M .

An electron is converted into a hole by Andreev reflection at the NS in-
terface, with phase shift −i for ε ≪ τ0∆/� [cf. (20)]. In the stroboscopic
description one assumes that Andreev reflection occurs only at times which
are multiples of τ0. The N × M matrix P projects onto the NS interface. Its
elements are Pnm = 1 if m = n ∈ {n1, n2, . . . nN} and Pnm = 0 otherwise. The
dwell time of a quasiparticle excitation in the normal metal is τdwell = M/N ,
equal to the mean time between Andreev reflections.

Putting all this together one constructs the quantum Andreev map from
the matrix product

F = P
(

F 0
0 F ∗

)

, P =

(

1 − PTP −iPTP
−iPTP 1 − PTP

)

. (23)

(The superscript “T” indicates the transpose of a matrix.) The particle-hole
wave function Ψ = (u, v) evolves in time as Ψ(p) = FpΨ(0). The Floquet
operator can be symmetrized (without changing its eigenvalues) by the unitary
transformation F → P−1/2FP1/2, with

P1/2 =

(

1 − (1 − 1
2

√
2)PTP −i1

2

√
2PTP

−i1
2

√
2PTP 1 − (1 − 1

2

√
2)PTP

)

. (24)

The quantization condition det(F − e−iε) = 0 can be written equivalently
as [27]

Det [1 + S(ε)S(−ε)∗] = 0 , (25)

in terms of the N × N scattering matrix [28, 29]

S(ε) = P [e−iε − F (1 − PTP )]−1FPT . (26)

3 The largest simulation to date of a two-dimensional Andreev billiard has N = 30,
while for the Andreev kicked rotator N = 105 is within reach, cf. Fig. 24.
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Equation (25) for the Andreev map has the same form as (22) for the Andreev
billiard (with α → −i). In particular, both equations have roots that lie
symmetrically around zero.

A specific realization of the Andreev map is the Andreev kicked rotator.
(See [30] for a different realization, based on the kicked Harper model.) The
normal kicked rotator has Floquet operator [31]

F = exp

(

i
�τ0

4I0

∂2

∂θ2

)

exp

(

−i
KI0

�τ0
cos θ

)

× exp

(

i
�τ0

4I0

∂2

∂θ2

)

. (27)

It describes a particle that moves freely along the unit circle (cos θ, sin θ) with
moment of inertia I0 for half a period τ0, is then kicked with a strength K cos θ,
and proceeds freely for another half period. Upon increasing K the classical
dynamics varies from fully integrable (K = 0) to fully chaotic [K >

∼ 7, with
Lyapunov exponent α ≈ ln(K/2)]. For K < 7 stable and unstable motion
coexist (mixed phase space). If needed, a magnetic field can be introduced
into the model as described in [32].

The transition from classical to quantum behavior is governed by the ef-
fective Planck constant heff ≡ �τ0/2πI0. For 1/heff ≡ M an even integer, F
can be represented by an M × M unitary symmetric matrix. The angular
coordinate and momentum eigenvalues are θm = 2πm/M and pm = �m, with
m = 1, 2, . . . M , so phase space has the topology of a torus. The NS interface
is an annulus around the torus, either in the θ-direction or in the p-direction.
(The two configurations give equivalent results.) The construction (23) pro-
duces a 2M × 2M Floquet operator F , which can be diagonalized efficiently
in O(M2 lnM) operations [rather than O(M3)] by combining the Lanczos
technique with the fast-Fourier-transform algorithm [33].

6 Random-Matrix Theory

An ensemble of isolated chaotic billiards, constructed by varying the shape at
constant area, corresponds to an ensemble of Hamiltonians H with a particular
distribution function P (H). It is convenient to think of the Hamiltonian as
a random M × M Hermitian matrix, eventually sending M to infinity. The
basic postulate of random-matrix theory (RMT) [9] is that the distribution is
invariant under the unitary transformation H → UHU†, with U an arbitrary
unitary matrix. This implies a distribution of the form

P (H) ∝ exp[−Tr V (H)] . (28)

If V (H) ∝ H2, the ensemble is called Gaussian. This choice simplifies some of
the calculations but is not essential, because the spectral correlations become
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largely independent of V in the limit M → ∞. More generally, the ensemble of
the form (28) is called the Wigner-Dyson ensemble, after the founding fathers
of RMT.

By computing the Jacobian from the space of matrix elements to the space
of eigenvalues En(n = 1, 2, . . . M), one obtains the eigenvalue probability dis-
tribution [9]

P ({En}) ∝
∏

i<j

|Ei − Ej |β
∏

k

e−V (Ek). (29)

The symmetry index β counts the number of degrees of freedom in the matrix
elements. These are real (β = 1) in the presence of time-reversal symmetry or
complex (β = 2) in its absence. (A third possibility, β = 4, applies to time-
reversally symmetric systems with strong spin-orbit scattering, which we will
not consider here.) Since the unitary transformation H → UHU† requires
an orthogonal U to keep a real Hamiltonian, one speaks of the Gaussian or-
thogonal ensemble (GOE) when β = 1. The name Gaussian unitary ensemble
(GUE) refers to β = 2.

There is overwhelming numerical evidence that chaotic billiards are well
described by the Wigner-Dyson ensemble [8]. (This is known as the Bohigas-
Giannoni-Schmit conjecture [34].) A complete theoretical justification is still
lacking, but much progress has been made in that direction [35]. In this section
we will take (28) for the ensemble of isolated billiards as our starting point
and deduce what properties it implies for the ensemble of Andreev billiards.

The isolated billiard becomes an Andreev billiard when it is connected
by a point contact to a superconductor, cf. Fig. 5. In the isolated billiard
RMT breaks down on energy scales greater than �/τerg, with the ergodic
time τerg ≃ A1/2/vF set by the time of flight across the billiard (of area A,
at Fermi velocity vF ). On larger energy scales, hence on shorter time scales,
non-chaotic dynamics appears which is beyond RMT. The superconductor
affects the billiard in an energy range around the Fermi level that is set by

V1

V2

N S

Fig. 5. A quantum dot (N) connected to a superconductor (S). The voltages on the
gates V1 and V2 change the shape of the dot. Different values of the applied voltages
create different samples within the same ensemble. From [36]
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the Thouless energy ET ≃ �/τdwell. (We assume that ET is less than the gap
∆ in the bulk superconductor.) In this context the dwell time τdwell is the
mean time between Andreev reflections (being the life time of an electron or
hole quasiparticle). The condition τerg ≪ τdwell of weak coupling is therefore
sufficient to be able to apply RMT to the entire relevant energy range.

6.1 Effective Hamiltonian

The excitation energies Ep of the Andreev billiard in the discrete part of the
spectrum are the solutions of the determinantal (22), given in terms of the
scattering matrix S(E) in the normal state (i.e. when the superconductor is
replaced by a normal metal). This equation can alternatively be written in
terms of the Hamiltonian H of the isolated billiard and the M × N coupling
matrix W that describes the N -mode point contact. The relation between S
and H,W is [3, 10]

S(E) = 1 − 2πiWT
(

E − H + iπWWT
)−1

W . (30)

The N × N matrix WT W has eigenvalues wn given by

wn =
Mδ

π2Γn

(

2 − Γn − 2
√

1 − Γn

)

, (31)

where δ is the mean level spacing in the isolated billiard and Γn ∈ [0, 1] is
the transmission probability of mode n = 1, 2, . . . N in the point contact. For
a ballistic contact, Γn = 1, while Γn ≪ 1 for a tunneling contact. Both the
number of modes N and the level spacing δ refer to a single spin direction.

Substituting (30) into (22), one arrives at an alternative determinantal
equation for the discrete spectrum [37]:

Det [E −H + W(E)] = 0 , (32)

H =

(

H 0
0 −H∗

)

, (33)

W(E) =
π√

∆2 − E2

(

EWWT ∆WWT

∆WWT EWWT

)

. (34)

The density of states follows from

ρ(E) = − 1

π
ImTr (1 + dW/dE)(E + i0+ −H + W)−1 . (35)

In the relevant energy range E <
∼ ET ≪ ∆ the matrix W(E) becomes en-

ergy independent. The excitation energies can then be obtained as the eigen-
values of the effective Hamiltonian [38]

Heff =

(

H −πWWT

−πWWT −H∗

)

. (36)
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The effective Hamiltonian Heff should not be confused with the Bogoliubov-de
Gennes Hamiltonian HBG, which contains the superconducting order parame-
ter in the off-diagonal blocks [cf. (2)]. The Hamiltonian HBG determines the
entire excitation spectrum (both the discrete part below ∆ and the continu-
ous part above ∆), while the effective Hamiltonian Heff determines only the
low-lying excitations Ep ≪ ∆.

The Hermitian matrix Heff (like HBG) is antisymmetric under the com-
bined operation of charge conjugation (C) and time inversion (T ) [39]:

Heff = −σyHT
effσy, σy =

(

0 −i
i 0

)

. (37)

(An M ×M unit matrix in each of the four blocks of σy is implicit.) The CT -
antisymmetry ensures that the eigenvalues lie symmetrically around E = 0.
Only the positive eigenvalues are retained in the excitation spectrum, but the
presence of the negative eigenvalues is felt as a level repulsion near E = 0.

6.2 Excitation Gap

In zero magnetic field the suppression of the density of states ρ(E) around
E = 0 extends over an energy range ET that may contain many level spacings
δ of the isolated billiard. The ratio g ≃ ET /δ is the conductance of the point
contact in units of the conductance quantum e2/h. For g ≫ 1 the excitation
gap Egap ≃ gδ is a mesoscopic quantity, because it is intermediate between
the microscopic energy scale δ and the macroscopic energy scale ∆. One can
use perturbation theory in the small parameter 1/g to calculate ρ(E). The
analysis presented here follows the RMT of Melsen et al. [22]. An alternative
derivation [40], using the disorder-averaged Green function, is discussed in the
next sub-section.

In the presence of time-reversal symmetry the Hamiltonian H of the iso-
lated billiard is a real symmetric matrix. The appropriate RMT ensemble is
the GOE, with distribution [9]

P (H) ∝ exp

(

− π2

4Mδ2
Tr H2

)

. (38)

The ensemble average 〈· · · 〉 is an average over H in the GOE at fixed coupling
matrix W . Because of the block structure of Heff , the ensemble averaged Green
function G(E) = 〈(E −Heff)−1〉 consists of four M ×M blocks G11, G12, G21,
G22. By taking the trace of each block separately, one arrives at a 2×2 matrix
Green function

G =

(

G11 G12

G21 G22

)

=
δ

π

(

TrG11 TrG12

TrG21 TrG22

)

. (39)

(The factor δ/π is inserted for later convenience.)
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The average over the distribution (38) can be done diagrammatically
[41, 42]. To leading order in 1/M and for E ≫ δ only simple (planar) di-
agrams need to be considered. Resummation of these diagrams leads to the
selfconsistency equation [22, 37]

G = [E + W − (Mδ/π)σzGσz]
−1, σz =

(

1 0
0 −1

)

. (40)

This is a matrix-generalization of Pastur’s equation in the RMT of normal
systems [43].

The matrices in (40) have four M ×M blocks. By taking the trace of each
block one obtains an equation for a 4 × 4 matrix,

G =
1

M

M
∑

m=1

(

πE/Mδ − G11 w̃m + G12

w̃m + G21 πE/Mδ − G22

)−1

, (41)

w̃m =

{

π2wm/Mδ if m = 1, 2, . . . N ,
0 if m = N + 1, . . . M .

(42)

Since G22 = G11 and G21 = G12 there are two unknown functions to deter-
mine. For M ≫ N these satisfy

G2
12 = 1 + G2

11 , (43a)

2πE

δ
G12 = G11

N
∑

n=1

(−G12 + 1 − 2/Γn)−1 , (43b)

where we have used the relation (31) between the parameters wn and the trans-
mission probabilities Γn. Equation (43) has multiple solutions. The physical
solution satisfies limE→∞〈ρ(E)〉 = 2/δ, when substituted into

〈ρ(E)〉 = −(2/δ) Im G11(E) . (44)

In Fig. 6 we plot the density of states in the mode-independent case Γn ≡
Γ , for several vaues of Γ . It vanishes as a square root near the excitation
gap. The value of Egap can be determined directly by solving (43) jointly with
dE/dG11 = 0. The result is

k6 − k4

(1 − k)6
x6 − 3k4 − 20k2 + 16

(1 − k)4
x4 +

3k2 + 8

(1 − k)2
x2 = 1 ,

x = Egap/ET , k = 1 − 2/Γ , ET = NΓδ/4π . (45)

For later use we parametrize the square-root dependence near the gap as

〈ρ(E)〉 → 1

π

√

E − Egap

∆3
gap

, E → Egap . (46)
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Fig. 6. Ensemble averaged density of states of a chaotic billiard coupled by a
point contact to a superconductor, for several values of the transmission proba-
bility through the point contact. The energy is in units of the Thouless energy
ET = NΓδ/4π. The solid curves are computed from (43) and (44), for mode-
independent transmission probabilities Γ = 1, 0.5, 0.25, 0.1. The dashed curve is
the asymptotic result (51) for Γ ≪ 1 Adapted from [22] (The definition of δ used in
that paper differs from the one used here by a factor of two)

When E ≫ Egap the density of states approaches the value 2/δ from above,
twice the value in the isolated billiard. The doubling of the density of states
occurs because electron and hole excitations are combined in the excitation
spectrum of the Andreev billiard, while in an isolated billiard electron and
hole excitations are considered separately.

A rather simple closed-form expression for 〈ρ(E)〉 exists in two limiting
cases [22]. In the case Γ = 1 of a ballistic point contact one has

〈ρ(E)〉 =
ET

√
3

3Eδ

[

Q+(E/ET ) − Q−(E/ET )
]

, (47)

Q±(x) =
[

8 − 36x2 ± 3x
√

3x4 + 132x2 − 48
]1/3

, (48)

E > Egap = 2γ5/2ET = 0.60ET =
0.30 �

τdwell
= 0.048Nδ ,

(49)

where γ = 1
2 (
√

5 − 1) is the golden number. In this case the parameter ∆gap

in (46) is given by

∆gap = [(5 − 2
√

5)δ2Egap/8π2]1/3 = 0.068N1/3δ . (50)

In the opposite tunneling limit Γ ≪ 1 one finds
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〈ρ(E)〉 =
2E

δ
(E2 − E2

T )−1/2, E > Egap = ET . (51)

In this limit the density of states of the Andreev billiard has the same form
as in the BCS theory for a bulk superconductor [44], with a reduced value of
the gap (“minigap”). The inverse square-root singularity at the gap is cut off
for any finite Γ , cf. Fig. 6.

6.3 Effect of Impurity Scattering

Impurity scattering in a chaotic Andreev billiard reduces the magnitude of the
excitation gap by increasing the mean time τdwell between Andreev reflections.
This effect was calculated by Vavilov and Larkin [40] using the method of
impurity-averaged Green functions [21]. The minigap in a disordered quantum
dot is qualitatively similar to that in a disordered NS junction, cf. Sect. 3.
The main parameter is the ratio of the mean free path l and the width of the
contact W . (We assume that there is no barrier in the point contact, otherwise
the tunnel probability Γ would enter as well.)

For l ≫ W the mean dwell time saturates at the ballistic value

τdwell =
2π�

Nδ
=

πA

vF W
, if l ≫ W . (52)

In the opposite limite l ≪ W the mean dwell time is determined by the two-
dimensional diffusion equation. Up to a geometry-dependent coefficient c of
order unity, one has

τdwell = c
A

vF l
ln(A/W 2) , if l ≪ W . (53)

The density of states in the two limits is shown in Fig. 7. There is little
difference, once the energy is scaled by τdwell. For l ≫ W the excitation gap
is given by the RMT result Egap = 0.300 �/τdwell, cf. (49). For l ≪ W Vavilov
and Larkin find Egap = 0.331 �/τdwell.

6.4 Magnetic Field Dependence

A magnetic field B, perpendicular to the billiard, breaks time-reversal symme-
try, thereby suppressing the excitation gap. A perturbative treatment remains
possible as long as Egap(B) remains large compared to δ [45].

The appropriate RMT ensemble for the isolated billiard is described by
the Pandey-Mehta distribution [9, 46]

P (H) ∝ exp

(

− π2(1 + b2)

4Mδ2

×
M
∑

i,j=1

[

(Re Hij)
2 + b−2(Im Hij)

2
]

)

. (54)



148 C.W.J. Beenakker

0 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1.0

1.2

1.4

dwell

Fig. 7. The dashed curve is the Γ = 1 result of Fig. 6, corresponding to a quantum
dot with weak impurity scattering (mean free path l much larger than the width
W of the point contact). The solid curve is the corresponding result for strong
impurity scattering (l ≪ W ). The line shape is almost the same, but the energy
scale is different (given by (52) and (53), respectively). Adapted from [40]

The parameter b ∈ [0, 1] measures the strength of the time-reversal symmetry
breaking. The invariance of P (H) under unitary transformations is broken if
b �= 0, 1. The relation between b and the magnetic flux Φ through the billiard
is [3]

Mb2 = c(Φe/h)2
�vF

δ
√

A
, (55)

with c a numerical coefficient that depends only on the shape of the billiard.
Time-reversal symmetry is effectively broken when Mb2 ≃ g, which occurs for
Φ ≃ (h/e)

√

τerg/τdwell ≪ h/e. The effect of such weak magnetic fields on the
bulk superconductor can be ignored.

The selfconsistency equation for the Green function is the same as (41),
with one difference: On the right-hand-side the terms G12 and G21 are multi-
plied by the factor (1− b2)/(1 + b2). In the limit M → ∞, b → 0, Mb2 finite,
the first (43a) still holds, but the second (43b) is replaced by

(2πE/δ − 4Mb2G11)G12 = G11

×
N

∑

n=1

(−G12 + 1 − 2/Γn)−1 . (56)

The resulting magnetic field dependence of the average density of states is
plotted in Fig. 8, for the case Γn ≡ 1 of a ballistic point contact. The gap
closes when Mb2 = NΓ/8. The corresponding critical flux Φc follows from
(55).
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Fig. 8. Magnetic field dependence of the density of states for the case of a ballistic
point contact (Γn ≡ 1), computed from (43a), (44), and (56). The microscopic gap
of order δ which persists when Φ > Φc is not resolved in this calculation. Adapted
from [45]

6.5 Broken Time-Reversal Symmetry

A microscopic suppression of the density of states around E = 0, on an energy
scale of the order of the level spacing, persists even if time-reversal symmetry
is fully broken. The suppression is a consequence of the level repulsion be-
tween the lowest excitation energy E1 and its mirror image −E1, which itself
follows from the CT -antisymmetry (37) of the Hamiltonian. Because of this
mirror symmetry, the effective Hamiltonian Heff of the Andreev billiard can
be factorized as

Heff = U

(

E 0
0 −E

)

U† , (57)

with U a 2M × 2M unitary matrix and E = diag(E1, E2, . . . EM ) a diagonal
matrix containing the positive excitation energies.

Altland and Zirnbauer [39] have surmised that an ensemble of Andreev
billiards in a strong magnetic field would have a distribution of Hamiltonians
of the Wigner-Dyson form (28), constrained by (57). This constraint changes
the Jacobian from the space of matrix elements to the space of eigenvalues,
so that the eigenvalue probability distribution is changed from the form (29)
(with β = 2) into

P ({En}) ∝
∏

i<j

(

E2
i − E2

j

)2 ∏

k

E2
ke−V (Ek)−V (−Ek) . (58)

The distribution (58) with V (E) ∝ E2 is related to the Laguerre unitary
ensemble (LUE) of RMT [9] by a change of variables. The average density of
states vanishes quadratically near zero energy [47],
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〈ρ(E)〉 =
2

δ

(

1 − sin(4πE/δ)

4πE/δ

)

. (59)

All of this is qualitatively different from the “folded GUE” that one would
obtain by simply combining two independent GUE’s of electrons and holes
[48].

A derivation of Altland and Zirnbauer’s surmise has been given by Frahm
et al. [38], who showed that the LUE for the effective Hamiltonian Heff of
the Andreev billiard follows from the GUE for the Hamiltonian H of the iso-
lated billiard, provided that the coupling to the superconductor is sufficiently
strong. To compute the spectral statistics on the scale of the level spacing, a
non-perturbative technique is needed. This is provided by the supersymmetric
method [49]. (See [50] for an alternative approach using quantum graphs.)

The resulting average density of states is [38]

〈ρ(E)〉 =
2

δ
− sin(2πE/δ)

πE

∫ ∞

0

ds e−s

× cos

(

2πE

δ

√

1 +
4s

gA

)

, (60)

gA =
N

∑

n=1

2Γ 2
n

(2 − Γn)2
. (61)

The parameter gA is the Andreev conductance of the point contact that cou-
ples the billiard to the superconductor [51]. The Andreev conductance can be

much smaller than the normal-state conductance g =
∑N

n=1 Γn. (Both con-
ductances are in units of 2e2/h.) In the tunneling limit Γn ≡ Γ ≪ 1 one has
g = NΓ while gA = 1

2 NΓ 2.
Equation (9) describes the crossover from the GUE result ρ(E) = 2/δ

for gA ≪ 1 to the LUE result (59) for gA ≫ 1. The opening of the gap
as the coupling to the superconductor is increased is plotted in Fig. 9. The
CT -antisymmetry becomes effective at an energy E for gA

>
∼ E/δ. For small

energies E ≪ δ min(
√

gA, 1) the density of states vanishes quadratically, re-
gardless of how weak the coupling is.

6.6 Mesoscopic Fluctuations of the Gap

The smallest excitation energy E1 in the Andreev billiard fluctuates from one
member of the ensemble to the other. Vavilov et al. [36] have surmised that
the distribution of these fluctuations is identical upon rescaling to the known
distribution [52] of the lowest eigenvalue in the Gaussian ensembles of RMT.
This surmise was proven using the supersymmetry technique by Ostrovsky,
Skvortsov, and Feigelman [53] and by Lamacraft and Simons [54]. Rescaling
amounts to a change of variables from E1 to x = (E1−Egap)/∆gap, where Egap

and ∆gap parameterize the square-root dependence (46) of the mean density
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Fig. 9. Density of states of the Andreev billiard in a strong magnetic field for three
different values of the Andreev conductance of the point contact: gA = 0.4, 4, 40.
The solid curves are calculated from (60). The dashed line is the LUE result (59),
corresponding to the limit gA → ∞. The dotted line is the GUE limit gA → 0.
Adapted from [38]

of states near the gap in perturbation theory. The gap fluctuations are a
mesoscopic, rather than a microscopic effect, because the typical magnitude

∆gap ≃ E
1/3
gapδ2/3 of the fluctuations is ≫ δ for Egap ≫ δ. Still, the fluctuations

are small on the scale of the gap itself.
Following [36], in zero magnetic field the gap distribution is obtained by

rescaling the GOE result of Tracy and Widom [52],

P (E1) =
d

dE1
F1 [(E1 − Egap)/∆gap] , (62)

F1(x) = exp

(

− 1
2

∫ x

−∞

[q(x′) + (x − x′)q2(x′)]dx′

)

.

(63)

The function q(x) is the solution of

q′′(x) = −xq(x) + 2q3(x) , (64)

with asymptotic behavior q(x) → Ai(−x) as x → −∞ [Ai(x) being the Airy
function]. For small x there is a tail of the form

P (x) ≈ 1

4
√

π|x|1/4
exp

(

− 2
3 |x|

3/2
)

, x ≪ −1 . (65)

The distribution (62) is shown in Fig. 10 (solid curve). The mean and standard
deviation are

〈E1〉 = Egap + 1.21∆gap, 〈(E1 − 〈E1〉)2〉1/2 = 1.27∆gap . (66)
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Fig. 10. Probability distribution of the rescaled excitation gap x = (E1 −
Egap)/∆gap, in the presence [β = 1, (62)] and absence [β = 2, (67)] of time-reversal
symmetry. Adapted from [36]

Because the mesoscopic fluctuations in the gap occur on a much smaller
energy scale ∆gap than Egap, there exists a range of magnetic fields that break
time-reversal symmetry of the gap fluctuations without significantly reducing
Egap [36]. In this field range, specified in Table 1, the distribution of the lowest
excitation is given by the GUE result [52]

P (E1) =
d

dE1
F2[(E1 − Egap)/∆gap] , (67)

F2(x) exp

(

−
∫ x

−∞

(x − x′)q2(x′)dx′

)

. (68)

This curve is shown dashed in Fig. 10. The tail for small x is now given by

Table 1. Characteristic energy and magnetic flux scales for the spectral statis-
tics in the bulk and at the edge of the spectrum and for the size of the gap. The
β = 2 distribution (67) applies to the flux range (h/e)τ

1/2
erg δ1/6E

1/3
gap/�

1/2 ≪ Φ ≪

(h/e)τ
1/2
erg E

1/2
gap/�

1/2

Energy Scale Flux Scale

Bulk statistics δ (h/e)τ
1/2
erg δ1/2/�

1/2

Edge statistics E
1/3
gapδ2/3 (h/e)τ

1/2
erg δ1/6E

1/3
gap/�

1/2

Gap size Egap (h/e)τ
1/2
erg E

1/2
gap/�

1/2
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P (x) ≈ 1

8π|x| exp
(

− 4
3 |x|

3/2
)

, x ≪ −1 . (69)

The mesoscopic gap fluctuations induce a tail in the ensemble averaged
density of states 〈ρ(E)〉 for E < Egap. In the same rescaled variable x the tail
is given by [36]

〈ρ(x)〉 = −xAi2(x) + [Ai′(x)]2

+ 1
2δβ,1Ai(x)

[

1 −
∫ ∞

x

Ai(y)dy

]

. (70)

Asymptotically, 〈ρ(x)〉 ∝ exp(− 2
3β|x|3/2) for x ≪ −1. The tail in 〈ρ(E)〉 is

the same as the tail in P (E), as it should be, since both tails are due to the
lowest eigenvalue. In Fig. 11 we compare these two functions in zero magnetic
field, together with the square-root density of states from perturbation theory.

0–2–4–6 2 4 6
0

0.2

0.4

0.6

0.8

x

〈ρ(x)〉

P(x)

perturbative
〈ρ(x)〉

Fig. 11. Ensemble averaged density of states 〈ρ〉 together with the probability
distribution P of the excitation gap, as a function of the rescaled energy x = (E −
Egap)/∆gap. The dotted and dashed curves are the universal results (62) and (70)
of RMT in the presence of time-reversal symmetry (β = 1). The solid curve is the
mean density of states (46) in perturbation theory. Adapted from [36]

A numerical simulation of the stroboscopic model of Sect. 5 provides a test
of these predictions [27]. Results are shown in Fig. 12, for the case β = 1 and
deep in the chaotic regime (kicking strength K ≫ 1). The agreement with
RMT is very good – without any adjustable parameters.
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Fig. 12. Main plot: Gap distribution for the Andreev kicked rotator with parameters
M = 2π/δ = 8192, kicking strength K = 45, and M/N = τdwell = 10 (⋄), 20 (•), 40
(+), and 50 (×). There is no magnetic field. The solid line is the RMT prediction
(62). Inset: Average density of states for the same system. The solid line is the RMT
prediction (49). (Deviations from perturbation theory are not visible on the scale of
the inset.) Adapted from [27]

6.7 Coulomb Blockade

Coulomb interactions between electron and hole quasiparticles break the
charge-conjugation invariance (37) of the Hamiltonian. Since Andreev reflec-
tion changes the charge on the billiard by 2e, this scattering process becomes
energetically unfavorable if the charging energy EC exceeds the superconduct-
ing condensation energy (Josephson energy) EJ . For EC

>
∼ EJ one obtains the

Coulomb blockade of the proximity effect studied by Ostrovsky, Skvortsov,
and Feigelman [55].

The charging energy EC = e2/2C is determined by the capacitance C of
the billiard. The Josephson energy is determined by the change in free energy
of the billiard resulting from the coupling to the superconductor,

EJ = −
∫ ∞

0

[ρ(E) − 2/δ]EdE . (71)

The discrete spectrum E < Egap contributes an amount of order E2
gap/δ

to EJ . In the continuous spectrum E > Egap the density of states ρ(E),
calculated by RMT, decays ∝ 1/E2 to its asymptotic value 2/δ. This leads
to a logarithmic divergence of the Josephson energy [37, 56], with a cutoff set
by min(∆, �/τerg):

EJ =
E2

gap

δ
ln

(

min(∆, �/τerg)

Egap

)

. (72)
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The suppression of the excitation gap with increasing EC is plotted in
Fig. 13, for the case Γ ≪ 1, ∆ ≪ �/τerg [55]. The initial decay is a square
root,

1 − ∆eff/Egap = 1
2

(

ECδ

E2
gap ln(2∆/Egap)

)1/2

≪ 1 , (73)

and the final decay is exponential,

∆eff/∆ = 2 exp
(

− 2ECδ/E2
gap

)

≪ 1 . (74)

Here ∆eff refers to the gap in the presence of Coulomb interactions and Egap =
NΓδ/4π is the noninteracting value (51).
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Fig. 13. Suppression due to Coulomb interactions of the gap ∆eff in the density
of states of an Andreev billiard coupled by a tunnel junction to a superconductor,
relative to the noninteracting gap Egap = NΓδ/4π (with Γ ≪ 1 ≪ NΓ ). The plot
is for the case ∆ = e5Egap ≪ �/τerg. The dashed lines are the asymptotes (73) and
(74). Adapted from [55]

The gap ∆eff governs the thermodynamic properties of the Andreev bil-
liard, most importantly the critical current. It is not, however, the relevant
energy scale for transport properties. Injection of charge into the billiard via
a separate tunnel contact measures the tunneling density of states ρtunnel,
which differs in the presence of Coulomb interactions from the thermodynamic
density of states ρ considered so far. The gap ∆tunnel in ρtunnel crosses over
from the proximity gap Egap when EC ≪ EJ to the Coulomb gap EC when
EC ≫ EJ , see Fig. 14. The single peak in ρtunnel at ∆tunnel splits into two
peaks when EC and EJ are of comparable magnitude [55]. This peak splitting
happens because two states of charge +e and −e having the same charging
energy are mixed by Andreev reflection into symmetric and antisymmetric
linear combinations with a slightly different energy.
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Fig. 14. Main plot: gap ∆tunnel in the tunneling density of states as a function of the
charging energy (for ∆ = e5Egap and NΓ = 40 π). The initial decay (barely visible
on the scale of the plot) follows (73) and crosses over to an increase (∆tunnel → EC).
Inset: tunneling density of states at ECδ/E2

gap = 2.8 (corresponding to the dot in
the main plot). Adapted from [55]

7 Quasiclassical Theory

It was noticed by Kosztin, Maslov, and Goldbart [5] that the classical dy-
namics at the Fermi energy in an Andreev billiard is integrable – even if
the dynamics in the isolated billiard is chaotic. Andreev reflection suppresses
chaotic dynamics because it introduces a periodicity into the orbits: The tra-
jectory of an electron is retraced by the Andreev reflected hole. At the Fermi
energy the hole is precisely the time reverse of the electron, so that the motion
is strictly periodic. For finite excitation energy or in a non-zero magnetic field
the electron and the hole follow slightly different trajectories, so the orbit does
not quite close and drifts around in phase space [5, 57, 58, 59, 60].

The near-periodicity of the orbits implies the existence of an adiabatic
invariant. Quantization of this invariant leads to the quasiclassical theory of
Silvestrov et al. [61].

7.1 Adiabatic Quantization

Figures 15 and 16 illustrate the nearly periodic motion in a particular An-
dreev billiard. Figure 15 shows a trajectory in real space while Fig. 16 is a
section of phase space at the interface with the superconductor (y = 0). The
tangential component px of the electron momentum is plotted as a function
of the coordinate x along the interface. Each point in this Poincaré map cor-
responds to one collision of an electron with the interface. (The collisions of
holes are not plotted.) The electron is retroreflected as a hole with the same
px. At the Fermi level (E = 0) the component py is also the same, and so
the hole retraces the path of the electron (the hole velocity being opposite to
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Fig. 15. Classical trajectory in an Andreev billiard. Particles in a two-dimensional
electron gas are deflected by an electrostatic potential. (The dotted circles are equipo-
tentials.) There is specular reflection at the boundaries with an insulator (thick solid

lines) and Andreev reflection at the boundary with a superconductor (dashed line).
The trajectory follows the motion between two Andreev reflections of an electron
near the Fermi energy. The Andreev reflected hole retraces this trajectory in opposite
direction. From [61]

Fig. 16. Poincaré map for the Andreev billiard of Fig. 15. Each dot represents a
starting point of an electron trajectory, at position x and with tangential momentum
px (in dimensionless units). The inset shows the full surface of section, while the main
plot is an enlargement of the central region. The drifting nearly periodic motion
follows contours of constant time T between Andreev reflections. The cross marks
the starting point of the trajectory shown in the previous figure. From [61]
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its momentum). The Poincaré map would then consist of a single point. At
non-zero excitation energy E the retroreflection occurs with a slight change in
py, because of the difference 2E in the kinetic energy of electrons (at energy
EF + E) and holes (at energy EF − E).

The resulting slow drift of the periodic trajectory traces out a contour in
the surface of section. These are isochronous contours [61], meaning that the
time T between Andreev reflections is the same for each point x, px on the
contour. The adiabatic invariance of T follows from the adiabatic invariance
of the action integral I over the nearly periodic motion from electron to hole
and back to electron:

I =

∮

pdq = 2ET . (75)

Since E is a constant of the motion, adiabatic invariance of I implies adiabatic
invariance of the time T between Andreev reflections.

Adiabatic invariance is defined in the limit E → 0 and is therefore distinct
from invariance in the sense of Kolmogorov-Arnold-Moser (KAM) [7], which
would require a critical E∗ such that a contour is exactly invariant for E < E∗.
There is numerical evidence [5] that the KAM theorem does not apply to a
chaotic Andreev billiard.

It is evident from Fig. 16 that contours of large T enclose a very small
area in a chaotic system. To estimate the area, it is convenient to measure x
in units of the width W of the constriction to the superconductor. Similarly,
px is conveniently measured in units of the range ∆p of transverse momenta
inside the constriction.4 The highly elongated shape evident in Fig. 16 is
a consequence of the exponential divergence in time of nearby trajectories,
characteristic of chaotic dynamics. The rate of divergence is the Lyapunov
exponent α. Since the Hamiltonian flow is area preserving, a stretching ℓ+(t) =
ℓ+(0)eαt of the dimension in one direction needs to be compensated by a
squeezing ℓ−(t) = ℓ−(0)e−αt of the dimension in the other direction. The area
A ≃ ℓ+ℓ− is then time independent. Initially, ℓ±(0) < 1. The constriction
at the superconductor acts as a bottleneck, enforcing ℓ±(T ) < 1. These two
inequalities imply ℓ+(t) < eα(t−T ), ℓ− < e−αt. The enclosed area, therefore,
has upper bound

Amax ≃ W∆pe−αT ≃ �Ne−αT , (76)

where N ≃ W∆p/� ≫ 1 is the number of channels in the point contact.
The two invariants E and T define a two-dimensional torus in the four-

dimensional phase space. Quantization of this adiabatically invariant torus
proceeds following Einstein-Brillouin-Keller [7, 63], by quantizing the area

4 We consider in this estimate the symmetric case W/L ≃ ∆p/pF ≪ 1, typical
for the smooth confining potential of Fig. 15. In the asymmetric case W/L ≪
∆p/pF ≃ 1, typical for the computer simulations using the kicked rotator, the
maximal area Amax is smaller by a factor W/L, cf. [62]. Consequently, the factor
ln N in (81) should be replaced by ln(NW/L).
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∮

pdq = 2π�(m + ν/4), m = 0, 1, 2, . . . (77)

enclosed by each of the two topologically independent contours on the torus.
Equation (77) ensures that the wave functions are single valued. The integer
ν counts the number of caustics (Maslov index) and in this case should also
include the number of Andreev reflections.

The first contour follows the quasiperiodic orbit of (75), leading to

ET = (m + 1
2 )π�, m = 0, 1, 2, . . . (78)

The quantization condition (78) is sufficient to determine the smoothed (or
ensemble averaged) density of states

〈ρ(E)〉 = N

∫ ∞

0

dT P (T )
∞
∑

m=0

δ
(

E − (m + 1
2 )π�/T

)

, (79)

using the classical probability distribution P (T ) for the time between Andreev
reflections. (The distribution P (T ) is defined with a uniform measure in the
surface of section (x, px) at the interface with the superconductor.)

Equation (79) is the “Bohr-Sommerfeld rule” of Melsen et al. [22]. It gen-
eralizes the familiar Bohr-Sommerfeld quantization rule for translationally
invariant geometries [cf. (7)] to arbitrary geometries. The quantization rule
refers to classical periodic motion with period 2T and phase increment per
period of 2ET/� − π, consisting of a part 2ET/� because of the energy dif-
ference 2E between electron and hole, plus a phase shift of −π from two
Andreev reflections. If E is not ≪ ∆, this latter phase shift should be re-
placed by −2 arccos(E/∆) [64, 65, 66], cf. (20). In the presence of a magnetic
field an extra phase increment proportional to the enclosed flux should be in-
cluded [67]. Equation (79) can also be derived from the Eilenberger equation
for the quasiclassical Green function [23].

To find the location of individual energy levels a second quantization condi-
tion is needed [61]. It is provided by the area

∮

T
pxdx enclosed by the isochro-

nous contours,

∮

T

pxdx = 2π�(n + ν/4), n = 0, 1, 2, . . . (80)

Equation (80) amounts to a quantization of the period T , which together with
(78) leads to a quantization of E. For each Tn there is a ladder of Andreev
levels Enm = (m + 1

2 )π�/Tn.
While the classical T can become arbitrarily large, the quantized Tn has a

cutoff. The cutoff follows from the maximal area (76) enclosed by an isochro-
nous contour. Since (80) requires Amax

>
∼ h, the longest quantized period is

T0 = α−1[lnN +O(1)]. The lowest Andreev level associated with an adiabat-
ically invariant torus is therefore
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E00 =
π�

2T0
=

π�α

2 ln N
. (81)

The time scale T0 ∝ | ln �| is the Ehrenfest time τE of the Andreev billiard,
to which we will return in Sect. 8.

The range of validity of adiabatic quantization is determined by the re-
quirement that the drift δx, δpx upon one iteration of the Poincaré map should
be small compared to the characteristic values W,pF . An estimate is [61]

δx

W
≃ δpx

pF
≃ Enm

�αN
eαTn ≃ (m + 1

2 )
e−α(T0−Tn)

αTn
. (82)

For low-lying levels (m ∼ 1) the dimensionless drift is ≪ 1 for Tn < T0. Even
for Tn = T0 one has δx/W ≃ 1/ ln N ≪ 1.

7.2 Integrable Dynamics

Unlike RMT, the quasiclassical theory is not restricted to systems with
a chaotic classical dynamics. Melsen et al. [22, 45] have used the Bohr-
Sommerfeld rule (79) to argue that Andreev billiards with an integrable classi-
cal dynamics have a smoothly vanishing density of states – without an actual
excitation gap. The presence or absence of an excitation gap is therefore a
“quantum signature of chaos”. This is a unique property of Andreev billiards.
In normal, not-superconducting billiards, it is impossible to distinguish chaotic
from integrable dynamics by looking at the density of states. One needs to
measure density-density correlation functions for that purpose [8].

The difference between chaotic and integrable Andreev billiards is illus-
trated in Fig. 17. As expected, the chaotic Sinai billiard follows closely the
prediction from RMT. (The agreement is less precise than for the kicked ro-
tator of Fig. 12, because the number of modes N = 20 is necessarily much
smaller in this simulation.) The density of states of the integrable circular
billiard is suppressed on the same mesoscopic energy scale ET as the chaotic
billiard, but the suppression is smooth rather than abrupt. Any remaining
gap is microscopic, on the scale of the level spacing, and therefore invisible in
the smoothed density of states.

That the absence of an excitation gap is generic for integrable billiards can
be understood from the Bohr-Sommerfeld rule [22]. Generically, an integrable
billiard has a power-law distribution of dwell times, P (T ) ∝ T−p for T → ∞,
with p ≈ 3 [68, 69]. Equation (79) then implies a power-law density of states,
〈ρ(E)〉 ∝ Ep−2 for E → 0. The value p = 3 corresponds to a linearly vanishing
density of states. An analytical calculation [70] of P (T ) for a rectangular
billiard gives the long-time limit P (T ) ∝ T−3 lnT , corresponding to the low-
energy asymptote 〈ρ(E)〉 ∝ E ln(ET /E). The weak logarithmic correction
to the linear density of states is consistent with exact quantum mechanical
calculations [22, 67].
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Fig. 17. Histograms: smoothed density of states of a billiard coupled by a ballistic
N -mode lead to a superconductor, determined by (22) and averaged over a range
of Fermi energies at fixed N . The scattering matrix is computed numerically by
matching wave functions in the billiard to transverse modes in the lead. A chaotic
Sinai billiard (top inset, solid histogram, N = 20) is contrasted with an integrable
circular billiard (bottom inset, dashed histogram, N = 30). The solid curve is the
prediction (49) from RMT for a chaotic system and the dashed curve is the Bohr-
Sommerfeld result (79), with dwell time distribution P (T ) calculated from classical
trajectories in the circular billiard. Adapted from [45]

7.3 Chaotic Dynamics

A chaotic billiard has an exponential dwell time distribution, P (T ) ∝ e−T/τdwell ,
instead of a power law [68]. (The mean dwell time is τdwell = 2π�/Nδ ≡
�/2ET .) Substitution into the Bohr-Sommerfeld rule (79) gives the density of
states [71]

〈ρ(E)〉 =
2

δ

(πET /E)2 cosh(πET /E)

sinh2(πET /E)
, (83)

which vanishes ∝ e−πET /E as E → 0. This is a much more rapid decay than
for integrable systems, but not quite the hard gap predicted by RMT [22].
The two densities of states are compared in Fig. 18.

When the qualitative difference between the random-matrix and Bohr-
Sommerfeld theories was discovered [22], it was believed to be a short-coming
of the quasiclassical approximation underlying the latter theory. Lodder and
Nazarov [23] realized that the two theoretical predictions are actually both
correct, in different limits. As the ratio τE/τdwell of Ehrenfest time and dwell
time is increased, the density of states crosses over from the RMT form (49) to
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Fig. 18. Comparison of the smoothed density of states in a chaotic Andreev bil-
liard as it follows from RMT ((49), with a hard gap) and as it follows from the
Bohr-Sommerfeld (BS) rule ((83), without a hard gap). These are the two limiting
distributions when the Ehrenfest time τE is, respectively, much smaller or much
larger than the mean dwell time τdwell

the Bohr-Sommerfeld form (83). We investigate this crossover in the following
section.

8 Quantum-To-Classical Crossover

8.1 Thouless Versus Ehrenfest

According to Ehrenfest’s theorem, the propagation of a quantum mechanical
wave packet is described for short times by classical equations of motion.
The time scale at which this correspondence between quantum and classical
dynamics breaks down in a chaotic system is called the Ehrenfest time τE [72].5

As explained in Fig. 19, it depends logarithmically on Planck’s constant: τE =
α−1 ln(Scl/h), with Scl the characteristic classical action of the dynamical
system and α the Lyapunov exponent.

This logarithmic h-dependence distinguishes the Ehrenfest time from other
characteristic time scales of a chaotic system, which are either h-independent
(dwell time, ergodic time) or algebraically dependent on h (Heisenberg time ∝
1/δ). That the quasiclassical theory of superconductivity breaks down on time
scales greater than τE was noticed already in 1968 by Larkin and Ovchinnikov
[74].

The choice of Scl depends on the physical quantity which one is studying.
For the density of states of the Andreev billiard (area A, opening of width
W ≪ A1/2, range of transverse momenta ∆p ≃ pF inside the constriction)

5 The name “Ehrenfest time” was coined in [73].
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Fig. 19. Two trajectories entering a chaotic billiard at a small separation δx(0)
diverge exponentially in time, δx(t) = δx(0)eαt. The rate of divergence α is the
Lyapunov exponent. An initial microscopic separation λF becomes macroscopic at
the Ehrenfest time τE = α−1 ln(L∗/λF ). The macroscopic length L∗ is determined
by the size and shape of the billiard. The Ehrenfest time depends logarithmically on
Planck’s constant: τE = α−1 ln(Scl/h), with Scl = mvF L∗ the characteristic classical
action. The evolution of a quantum mechanical wave packet is well described by a
classical trajectory only for times less than τE

the characteristic classical action is6 Scl = mvF W 2/A1/2 [40]. The Ehrenfest
time then takes the form

τE = α−1[ln(N2/M) + O(1)] . (84)

Here M = kF A1/2/π and N = kF W/π are, respectively, the number of modes
in a cross-section of the billiard and in the point contact. Equation (84) holds
for N >

∼

√
M . For N <

∼

√
M the Ehrenfest time may be set to zero, because

the wave packet then spreads over the entire billiard within the ergodic time
[62].

Chaotic dynamics requires α−1 ≪ τdwell. The relative magnitude of τE and
τdwell thus depends on whether the ratio N2/M is large or small compared to
the exponentially large number eατdwell .

The result of RMT [22], cf. Sect. 6.2, is that the excitation gap in an
Andreev billiard is of the order of the Thouless energy ET ≃ �/τdwell. It
was realized by Lodder and Nazarov [23] that this result requires τE ≪ τdwell.
More generally, the excitation gap Egap ≃ min (ET , �/τE) is determined by the
smallest of the Thouless and Ehrenfest energy scales. The Bohr-Sommerfeld
theory [22], cf. Sect. 7.3, holds in the limit τE → ∞ and therefore produces a
gapless density of states.

8.2 Effective RMT

A phenomenological description of the crossover from the Thouless to the
Ehrenfest regime is provided by the “effective RMT” of Silvestrov et al. [61].

6 The simpler expression Scl = mvF W of [61] applies to the symmetric case
W/A1/2 ≃ ∆p/pF ≪ 1.
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As described in Sect. 7.1, the quasiclassical adiabatic quantization allows to
quantize only the trajectories with periods T ≤ T0 ≡ τE . The excitation
gap of the Andreev billiard is determined by the part of phase space with
periods longer than τE . Effective RMT is based on the hypothesis that this
part of phase space can be quantized by a scattering matrix Seff in the circular
ensemble of RMT, with a reduced dimensionality

Neff = N

∫ ∞

τE

P (T ) dT = Ne−τE/τdwell . (85)

The energy dependence of Seff(E) is that of a chaotic cavity with mean
level spacing δeff , coupled to the superconductor by a long lead with Neff

propagating modes. (See Fig. 20.) The lead introduces a mode-independent
delay time τE between Andreev reflections, to ensure that P (T ) is cut off for
T < τE . Because P (T ) is exponential ∝ exp(−T/τdwell), the mean time 〈T 〉∗
between Andreev reflections in the accessible part of phase space is simply
τE + τdwell. The effective level spacing in the chaotic cavity by itself (without
the lead) is then determined by

2π�

Neffδeff
= 〈T 〉∗ − τE = τdwell . (86)

It is convenient to separate the energy dependence due to the lead from
that due to the cavity, by writing Seff(E) = exp(iEτE/�)S0(E), where S0(E)
represents only the cavity and has an energy dependence of the usual RMT
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Fig. 20. Pictorial representation of the effective RMT of an Andreev billiard. The
part of phase space with time T > τE between Andreev reflections is represented by
a chaotic cavity (mean level spacing δeff), connected to the superconductor by a long
lead (Neff propagating modes, one-way delay time τE/2 for each mode). Between
two Andreev reflections an electron or hole spends, on average, a time τE in the
lead and a time τdwell in the cavity. The scattering matrix of lead plus cavity is
exp(iEτE/�)S0(E), with S0(E) distributed according to the circular ensemble of
RMT (with effective parameters Neff , δeff). The complete excitation spectrum of
the Andreev billiard consists of the levels of the effective RMT (periods > τE) plus
the levels obtained by adiabatic quantization (periods <τE)
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form (30) – with effective parameters Neff and δeff . The determinant (22) for
the excitation spectrum then takes the form

Det
[

1 − α(E)2e2iEτE/�S0(E)S0(−E)∗
]

= 0 . (87)

We can safely replace α(E) ≡ exp[−i arccos(E/∆)] → −i (since E ≪ ∆), but
the energy dependence of the phase factor e2iEτE/� can not be omitted.

In App. A we calculate the smallest positive E that solves (87), which is
the excitation gap Egap of the effective RMT. The result is plotted in Fig. 21
(solid curve), as a function of τE/τdwell. The two asymptotes (dotted lines)
are

Egap =
γ5/2

�

τdwell

(

1 − (2γ − 1)
τE

τdwell

)

, τE ≪ τdwell , (88)

Egap =
π�

2τE

(

1 − (3 +
√

8)
τdwell

τE

)

, τE ≫ τdwell , (89)

with γ = 1
2 (
√

5 − 1) the golden number.

Fig. 21. Excitation gap of the Andreev billiard in the crossover from Thouless
to Ehrenfest regimes. The solid curve is the solution of the effective RMT of [61],
derived in App. A. The dotted lines are the two asymptotes (88) and (89). The
dashed curve is the result of the stochastic model of [40], discussed in Sect. 8.3

The τE time delay characteristic of the effective RMT was introduced in
[61], but its effect on the excitation gap was not evaluated properly.7 As a
consequence the formula for the gap given in that paper,

7 I am indebted to P. W. Brouwer for spotting the error.
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Egap =
0.30 �

〈T 〉∗
=

0.30 �

τE + τdwell
, (90)

provides only a qualitative description of the actual crossover.
The inverse correlation (90) between the gap and the dwell time of long

trajectories was observed in a computer simulation of the Andreev kicked
rotator [75]. The data points in Fig. 22 track the excitation gap as the location
in phase space of the NS interface is varied. The solid curve is a plot of

1

〈T 〉∗
=

∫ ∞

T∗
P (T )dT

∫ ∞

T∗
TP (T )dT

, (91)

with P (T ) the classical dwell time distribution and T ∗ = 7. We see that the
sample-to-sample fluctuations in the gap correlate very well with the fluc-
tuations in the mean dwell time of long trajectories. The correlation is not
sensitive to the choice of T ∗, as long as it is greater than τE = 4.4.
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Fig. 22. The data points (left axis) are the quantum mechanical gap values Egap

of the Andreev kicked rotator as a function of the location of the NS interface, for
parameter values M = 131072, τdwell = M/N = 5, K = 14. The solid curve (right
axis) is the reciprocal of the mean dwell time (91) of classical trajectories longer
than T ∗ = 7. Adapted from [75]

8.3 Stochastic Model

Small-angle scattering by a smooth disorder potential provides a stochastic
model for the quantum diffraction of a wave packet in a chaotic billiard [76].
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The scattering time of the stochastic model plays the role of the Ehrenfest
time in the deterministic chaotic dynamics. The advantage of a stochastic
description is that one can average over different realizations of the disorder
potential. This provides for an established set of analytical techniques. The
disadvantage is that one does not know how well stochastic scattering mimics
quantum diffraction.

Vavilov and Larkin [40] have used the stochastic model to study the
crossover from the Thouless regime to the Ehrenfest regime in an Andreev
billiard. They discovered that the rapid turn-on of quantum diffraction at
τE

>
∼ τdwell not only causes an excitation gap to open at �/τE , but that it

also causes oscillations with period �/τE in the ensemble-averaged density of
states 〈ρ(E)〉 at high energies E >

∼ ET . In normal billiards oscillations with
this periodicity appear in the level-level correlation function [77], but not in
the level density itself.

The predicted oscillatory high-energy tail of 〈ρ(E)〉 is plotted in Fig. 23, for
the case τE/τdwell = 3, together with the smooth results of RMT (τE/τdwell →
0) and Bohr-Sommerfeld (BS) theory (τE/τdwell → ∞).
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/

Fig. 23. Oscillatory density of states at finite Ehrenfest time (solid curve), compared
with the smooth limits of zero (RMT) and infinite (BS) Ehrenfest times. The solid

curve is the result of the stochastic model of Vavilov and Larkin, for τE = 3 τdwell =
3�/2ET . (The definition (84) of the Ehrenfest time used here differs by a factor of
two from that used by those authors.) Adapted from [40]

Independent analytical support for the existence of oscillations in the den-
sity of states with period �/τE comes from the singular perturbation theory
of [78]. Support from numerical simulations is still lacking. Jacquod et al. [27]
did find pronounced oscillations for E >

∼ ET in the level density of the An-
dreev kicked rotator. However, since these could be described by the Bohr-
Sommerfeld theory they can not be the result of quantum diffraction, but
must be due to nonergodic trajectories [79].
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The τE-dependence of the gap obtained by Vavilov and Larkin is plot-
ted in Fig. 21 (dashed curve). It is close to the result of the effective RMT
(solid curve). The two theories predict the same limit Egap → π�/2τE for
τE/τdwell → ∞. The asymptotes given in [40] are

Egap =
γ5/2

�

τdwell

(

1 − 0.23
τE

2τdwell

)

, τE ≪ τdwell , (92)

Egap =
π�

2τE

(

1 − 2τdwell

τE

)

, τE ≫ τdwell . (93)

Both are different from the results (88) and (89) of the effective RMT.8

8.4 Numerical Simulations

Because the Ehrenfest time grows only logarithmically with the size of the
system, it is exceedingly difficult to do numerical simulations deep in the
Ehrenfest regime. Two simulations [27, 80] have been able to probe the initial
decay of the excitation gap, when τE

<
∼ τdwell. We show the results of both

simulations in Fig. 24 (closed and open circles), together with the full decay as
predicted by the effective RMT of Sect. 8.2 (solid curve) and by the stochastic
model of Sect. 8.3 (dashed curve).

The closed circles were obtained by Jacquod et al. [27] using the strobo-
scopic model of Sect. 5 (the Andreev kicked rotator). The number of modes
N in the contact to the superconductor was increased from 102 to 105 at
fixed dwell time τdwell = M/N = 5 and kicking strength K = 14 (correspond-
ing to a Lyapunov exponent α ≈ ln(K/2) = 1.95). In this way all classical
properties of the billiard remain the same while the effective Planck constant
heff = 1/M = 1/Nτdwell is reduced by three orders of magnitude. To plot the
data as a function of τE/τdwell, (84) was used for the Ehrenfest time. The
unspecified terms of order unity in that equation were treated as a single fit
parameter. (This amounts to a horizontal shift by −0.286 of the data points
in Fig. 24.)

The open circles were obtained by Kormányos et al. [80] for the chaotic
Sinai billiard shown in the inset. The number of modes N was varied from
18 to 30 by varying the width of the contact to the superconductor. The
Lyapunov exponent α ≈ 1.7 was fixed, but τdwell was not kept constant in
this simulation. The Ehrenfest time was computed by means of the same
formula (84), with M = 2LckF /π and Lc the average length of a trajectory
between two consecutive bounces at the curved boundary segment.

The data points from both simulations have substantial error bars (up to
10%). Because of that and because of their limited range, we can not conclude
that the simulations clearly favor one theory over the other.

8 Since 2γ − 1 = 0.236, the small-τE asymptote of Vavilov and Larkin differs by a
factor of two from that of the effective RMT.
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Fig. 24. Ehrenfest-time dependence of the excitation gap in an Andreev billiard,
according to the effective RMT (solid curve, calculated in App. A) and according
to the stochastic model (dashed curve, calculated in [40]). The data points result
from the simulation of the Andreev kicked rotator [27] (closed circles, in the range
N = 102−105) and of the Sinai billiard shown in the inset [80] (open circles, in the
range N = 18−30)

9 Conclusion

Looking back at what we have learned from the study of Andreev billiards,
we would single out the breakdown of random-matrix theory as the most
unexpected discovery and the one with the most far-reaching implications for
the field of quantum chaos. In an isolated chaotic billiard RMT provides an
accurate description of the spectral statistics on energy scales below �/τerg

(the inverse ergodic time). The weak coupling to a superconductor causes
RMT to fail at a much smaller energy scale of �/τdwell (the inverse of the
mean time between Andreev reflections), once the Ehrenfest time τE becomes
greater than τdwell.

In the limit τE → ∞, the quasiclassical Bohr-Sommerfeld theory takes over
from RMT. While in isolated billiards such an approach can only be used for
integrable dynamics, the Bohr-Sommerfeld theory of Andreev billiards applies
regardless of whether the classical motion is integrable or chaotic. This is
a demonstration of how the time-reversing property of Andreev reflection
unravels chaotic dynamics.

What is lacking is a conclusive theory for finite τE
>
∼ τdwell. The two phe-

nomenological approaches of Sects. 8.2 and 8.3 agree on the asymptotic be-
havior

lim
�→0

Egap =
π�α

2| ln �| + constant
, (94)

in the classical � → 0 limit (understood as N → ∞ at fixed τdwell). There
is still some disagreement on how this limit is approached. We would hope
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that a fully microscopic approach, for example based on the ballistic σ-model
[81, 82], could provide a conclusive answer. At present technical difficulties
still stand in the way of a solution along those lines [83].

A new direction of research is to investigate the effects of a nonisotropic
superconducting order parameter on the Andreev billiard. The case of d-wave
symmetry is most interesting because of its relevance for high-temperature
superconductors. The key ingredients needed for a theoretical description ex-
ist, notably RMT [84], quasiclassics [85], and a numerically efficient Andreev
map [86].
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A Excitation Gap in Effective RMT

and Relationship with Delay Times

We seek the edge of the excitation spectrum as it follows from the determinant
(87), which in zero magnetic field and for E ≪ ∆ takes the form

Det
[

1 + e2iEτE/�S0(E)S0(−E)†
]

= 0 . (95)

The unitary symmetric matrix S0 has the RMT distribution of a chaotic
cavity with effective parameters Neff and δeff given by (85) and (86). The
mean dwell time associated with S0 is τdwell. The calculation for Neff ≫ 1
follows the method described in Sects. 6.1 and 6.2, modified as in [37] to
account for the energy dependent phase factor in the determinant.

Since S0 is of the RMT form (30), we can write (95) in the Hamiltonian
form (32). The extra phase factor exp(2iEτE/�) introduces an energy depen-
dence of the coupling matrix,

W0(E) =
π

cos u

(

W0W
T
0 sin u W0W

T
0

W0W
T
0 W0W

T
0 sinu

)

, (96)

where we have abbreviated u = EτE/�. The subscript 0 reminds us that the
coupling matrix refers to the reduced set of Neff channels in the effective RMT.
Since there is no tunnel barrier in this case, the matrix W0 is determined by
(31) with Γn ≡ 1. The Hamiltonian

H0 =

(

H0 0
0 −H0

)

(97)
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is that of a chaotic cavity with mean level spacing δeff . We seek the gap in the
density of states

ρ(E) = − 1

π
ImTr

(

1 +
dW0

dE

)

(

E + i0+ −H0 + W0

)−1

, (98)

cf. (35).
The selfconsistency equation for the ensemble-averaged Green function,

G = [E + W0 − (Mδeff/π)σzGσz]
−1 , (99)

still leads to (43a), but (43b) should be replaced by

G11 + G12 sinu = −(τdwell/τE)uG12

× (G12 + cos u + G11 sin u) . (100)

(We have used that Neffδeff = 2π�/τdwell.) Because of the energy dependence
of the coupling matrix, the (44) for the ensemble averaged density of states
should be replaced by

〈ρ(E)〉 = −2

δ
Im

(

G11 −
u

cos u
G12

)

. (101)

The excitation gap corresponds to a square root singularity in 〈ρ(E)〉,
which can be obtained by solving (43a) and (100) jointly with dE/dG11 = 0
for u ∈ (0, π/2). The result is plotted in Fig. 21. The small- and large-τE

asymptotes are given by (88) and (89).
The large-τE asymptote is determined by the largest eigenvalue of the

time-delay matrix. To see this relationship, note that for τE ≫ τdwell we may
replace the determinant (95) by

Det

[

1 + exp[2iEτE/� + 2iEQ(0)] + O
(

τdwell

τE

)2
]

= 0 . (102)

The Hermitian matrix

Q(E) =
1

i
S0(E)†

d

dE
S0(E) (103)

is known in RMT as the Wigner-Smith or time-delay matrix. The roots Enp

of (102) satisfy

2Enp(τE + τn) = (2p + 1)π�, p = 0, 1, 2, . . . . (104)

The eigenvalues τ1, τ2, . . . τNeff
of �Q(0) are the delay times. They are all

positive, distributed according to a generalized Laguerre ensemble [87]. In the
limit Neff → ∞ the distribution of the τn’s is nonzero only in the interval
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(τ−, τ+), with τ± = τdwell(3±
√

8). By taking p = 0, τn = τ+ we arrive at the
asymptote (89).

The precise one-to-one correspondence (104) between the spectrum of low-
lying energy levels of the Andreev billiard and the spectrum of delay times is
a special property of the classical limit τE → ∞. For τE

<
∼ τdwell there is only

a qualitative similarity of the two spectral densities [88].
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